IIoT Top News: Oil and Gas Early Adopters

The Industrial Internet of Things (IIoT) is not just a means for organizations to harvest and analyze vast amounts of data to drive better business decisions. It is driving innovative ways for companies to keep their employees safe and out of harm’s way. In the latest IIoT Top News, we’ll take a look at some trending stories from the oil and gas industry, a quickly growing user of the Industrial Internet of Things to help power data-driven decisions, business operation optimization, and employee safety. The possibility of an industrial wireless oilfield is now not just a pipe dream, but a reality. Wearable Technology and the IoT Improving Safety for Oil and Gas Workers For many folks, wearable technology is viewed as a simple fad of smart watches and health tracking hardware. In the grand scheme of things, we’re just beginning to scratch the surface of wearable tech, with biotechnology, embedded smart tracking hardware, and much more right on the horizon. As noted in this article from the EconoTimes, one of the industries beginning to leverage the power of wearable technology is oil and gas. Looking back at 2014, occupational fatalities nationally were 3 per 100,000 workers. In oil and gas, that number skyrockets to 15. That’s why some organizations in this hazardous industry are turning towards the IIoT and wearable tech to keep their employees safe. From fall risk mitigation, to toxin and fume inhalation prevention and diagnosis, the applications for wearable technology for oil and gas employees in the field are many. One of the current limitations for wearable tech in the field is the ruggedness of the technology, but as new devices are designed that can withstand harsh environments, you can expect to see more adoption of this potentially life-saving tech. The IIoT and Operationalizing Excellence For the oil and gas industry, the advent of the Industrial Internet of Things (sometimes referred to as Industry 4.0) holds massive promise. From reacting to changing global trade conditions in real-time, to instantaneous equipment feedback, there are myriad uses for connected tech. This recent article from IoT Business News cautions us to heed the warnings of the dot.com era and take a strategic approach. The article argues that expecting the IIoT to be a silver bullet for business decisions will only lead to more confusion. It notes that Industry 4.0 is an incredibly powerful tool, one with the ability to fundamentally change the way oil and gas organizations do business, but it is important to go “back to the basics” and understand business needs and objectives before trying to dive into the data. In the Oil Industry, IoT is Booming Oil and gas is not always known for its agility, but when it comes to the Internet of Things,  the industry is moving at a decidedly rapid pace. This article from Offshore Engineer asserts that the IoT is not only increasingly becoming part of many organization’s strategies, but is fundamentally becoming embedded in the “oil psyche.” Dave Mackinnon, head of Technology Innovation at Total E&P UK, provides quite a bit of color around this assertion, and he believes that oil and gas is moving towards a “digital supply chain” that was fundamentally revolutionize the sector. Mackinnon also believes that when it comes to the IoT train, it’s either get on, or get left behind. “In an IoT world, many companies will discover that being just a manufacturing company or just an Internet company will no longer be sufficient; they will need to become both – or become subsumed in an ecosystem in which they play a smaller role,” Mackinnon said. Cyberattack Concerns Loom for Oil and Gas While the highest profile cyberattacks have been in the commerce and financial sectors, industrial targets remain at high risk. A recent article from Hydrocarbon Engineering notes that “because of its complex layers of supply chains, processes and industrial controls, makes [the oil and gas industry] a high value target for hackers.” As oil and gas organizations look to leverage the Internet of Things to bring increased value to their companies, it will become more and more important to build extra layers of security into their systems. Enabling the Connected Worker                       While the IIoT is indeed changing the way oil and gas companies make decisions, it is also changing the way employees perform their jobs. This article from Gas Today notes some of the ways the IoT is changing the roles of workers in the field. From AI planning and scheduling, to predictive maintenance on equipment, the connected worker faces a vastly different workplace landscape than even a few years in the past. Ultimately, oil and gas companies will look to leverage the IoT to help their employees make better decisions, as well as to stay safer and work more efficiently. Final Thoughts The Industrial Internet of Things is growing with rapid adoption across many verticals, but oil and gas is already reaping outstanding benefits from this next phase of industry. Lowering costs, optimizing oil production, and increasing worker safety are just a few of the ways oil and gas is leveraging this technological revolution.

Connected Oil Fields in Peru

China National Petroleum Corporation (CNPC) is one of the largest energy companies in the world with operations in 28 countries. In May 2017, CNPC announced it would invest $2 billion in an oil and natural gas block in the southern part of Peru. Beyond the recent investment, CNPC has had a presence in Peru for more than 20 years, including oil fields in the northern portion of the country. To optimize operations in 2009, CNPC ran a pilot test in Piura, Peru to find the ideal communication solution for monitoring, collecting and transporting data. Piura is a coastal city located near the equator where the average temperatures hover around 95 degrees Fahrenheight. To connect the oil fields into the Supervisory Control and Data Acquisition (SCADA) system, CNPC needed a communication technology built to withstand harsh weather, such as high temperatures, large amounts of rain, wind and a variety of other environmental factors. The goal of the pilot was to have several test sites reporting to a gateway and then into a SCADA system to monitor several pumping devices and equipment including: Pump of Controller (POC), Pump Cavity Progressive (PCP), Balance Oil Recovery System (BORS) and plunger lift. FHSS for Oil and Gas In the Piura test case, the distances between links weren’t long, but depressions, canyons and steams made line-of-site (LOS) a challenge. CNPC, who tested multiple Machine-to-Machine (M2M) communication solutions in Piura, found that FreeWave’s Frequency Hopping Spread Spectrum (FHSS) technology solutions offered the most reliable connectivity in comparison to other solutions used during the test. FreeWave solutions also use repeaters that helped establish and maintain connectivity despite the lack of LOS. Additionally, the links were established easily and fast in comparison to other solutions that were a part of the test. During the entire three-month pilot, the FHSS-based M2M solutions did not lose communication or the ability to send data to the SCADA system. Industrially hardened, ruggedized FHSS technology has proven to be reliable in in many oil and gas installations around the world. As the Industrial IoT (IIoT) drives connectivity, we continue to see the demand for reliable communication links in environments like Piura that can have challenging conditions. FHSS technology offers not only a reliable, easy to install communication link, but it easily integrates into today’s modern IIoT networks. To get the full story about the test sites in Piura, read the case study: https://www.freewave.com/case-studies/china-national-petroleum-company/    

Can Oil and Gas Keep Up with Digital Disruption?

The oil and gas industry has faced transformational potential in the last several years. As a critical piece of infrastructure for nearly every industry – and the economy – it’s ability to keep pace with the lightning rate of technological upheaval has been challenged. The convergence of IoT, the Cloud and Big Data has created a whirlwind of possibilities, but the major challenge will be whether the industry can successfully unify its data collection and transport at the necessary scale. There are several factors that will determine the ultimate success of this data: hardware capable of handling the consistently rugged environment, reliable connectivity, a general consensus on the best programming language for widespread use, and the applications capable of transforming Big Data into Smart Data. Rugged Hardware Most well pads are set in remote environments where the conditions are rugged or downright extreme. Not only are RF communications greatly affected by these conditions, but as the connectivity shifts toward (potentially) remote WiFi, then the devices must not only be more sophisticated, but that sophistication must be ruggedized as well. We recently published a case study that shows how our radios held up in a cool use-case in Antarctica for data collection in an extremely harsh environment. Granted, most oil companies are not looking Antarctica as a possible drilling location, but the visual does a good job of showing just how rugged the hardware needs to be. It cannot fail when delivering data to companies, as that data is more important than ever. Reliable Connectivity There are several different methods for connectivity at remote locations, but two that are gaining ground on traditional systems are Frequency Hopping Spread Spectrum (FHSS) and WiFi. Of the two, WiFi faces the greatest obstacles because it relies on several different transfer or booster points, but its strengths as a transport method are starting to outweigh some of those challenges. FHSS has been around for quite a while, but the technology, surprisingly, is still somewhat misunderstood. The ripple effect from its applications are felt throughout many industries, but the key differentiators are its consistency and reliability. Programming Languages Today, there is hardware on the market that is capable of putting proprietary, third-party applications at the edge. But, in order for these apps to be effective, the industry needs to find the programming language that best serves the need. It’s similar to when personal computers were first hitting the market. Each PC company wanted its computer to run its own kind of software, but the industry ultimately realized that best chance for success was to create a standard. Since then, even though open source is still a critical piece of software development, most PCs and other platforms can basically run the same kind of software. This same approach to standardization needs to be taken with programming languages or the battle for supremacy will continue to fracture an industry at a time when it needs cohesion for maximum growth. Edge Applications Speaking of finding a unified programming language, the result of that will be an explosion of applications that can be deployed on the aforementioned hardware. Once companies have the ability to create these applications to fit specific needs, then they will be able to take Big Data and turn it into Smart Data. A hallmark of the Industrial IoT, and what separates it from basic machine-to-machine communication, is the intelligence. Smarter applications means smarter data means more efficiency. Many of these platforms are still in their infancies, but we’ve seen evidence of a strong groundswell bringing these to the forefront. Ultimately, if these four components can come together in the right way, the oil and gas industry will be able to reap the benefits. And, frankly, they will be reaping these benefits long before other industrially oriented markets. Aligning these needs is not easy, but the potential exists as long as oil and gas companies embrace the disruption and unify the data.

FreeWave at ENTELEC Booth #313

The ENTELEC Conference & Expo gives you the opportunity to network with professionals from the petroleum, pipeline, natural gas and electric utility sectors.  We’d like to discuss our new ZumLink, WaveContact and WavePro solutions and how they can make your operations run smoothly. We will be there from April 25-27. Demonstrations at the Booth Stop by for live demonstrations of our Sensor-2-Server (S2S) solutions at Booth #313. You’ll also have a chance to view our latest Industrial IoT (IIoT) offerings, including rugged, flexible solutions for use in C1 D1 hazardous locations and programmable solutions for communications at the edge of the network. Find out why these solutions are ideal for the wireless oilfield. Technical Sessions Scott Allen, Chief Marketing Officer at FreeWave, will also lead two technical sessions at ENTELEC: Sensor-2-Server: Execute Locally, Communicate Globally Wednesday, April 26 in Room 310B from 3 p.m. – 4 p.m. The idea of comparing data in motion (at the sensor level) to data at rest (in a big data server warehouse) with predictive analytics in the cloud is very appealing to the industrial sector. The problem big data vendors have, however, is access to that data in motion at the sensor location. Legacy SCADA systems are inadequate and there are very few options for the local execution of predictive analytics applications to apply changes actively in the field. This presentation covers Sensor-to-Server intelligent communications for the IT access layer in regards to collecting and transporting data that supports higher-level analytics. IT/OT Convergence: The Impact from the Industrial Internet of Things Thursday, April 27 in Room 301B from 2 p.m. – 3 p.m. The integration of IT & OT promotes process management tools that help ensure every stakeholder in an organization has accurate information. As OT products, such as PLCs and RTUs, become more aligned with commercial software infrastructures, integrating OT information with IT systems at a process level is difficult. Getting these systems to work together to maximize business efficiency is more challenging. IoT networking technology enables large quantities of information to be readily available – allowing these high-speed data transport technologies to be the true enabler in IT/OT convergence. Critical industries, like utilities, need high-speed connectivity, but also want to maintain security standards and protocols. With high data capacity OT networks, the overhead of Internet and security protocols is no longer critical to network latency and SCADA applications for communications. OT/IT networks now use the same Network and Transport layers, clearing one of the fundamental barriers to convergence. We are looking forward to an action packed conference and we hope to see you  there!

Well-Pad Automation Through the CC1310 Wireless MCU

Oil companies use high-tech radios for production site automation in cool new ways. Competition in oil production can get pretty ugly, especially when the price of oil is low, as it has been for the past several years. To stay competitive against big players, smaller regional oil and gas companies are turning to well-pad automation practices to keep their costs low and their production reliable and steady. What is well-pad automation, you ask? Well, to put it simply, it’s the deployment of technology that monitors, measures and manages the production and storage of oil and gas at a well site or storage tank in real time. This technology includes sensors that measure pressure, temperature, flow, level and all sorts of other things that all need to work together in order for a well to produce, store or transport its product. Once these sensors are deployed, the next step is to add intelligence to automate certain functions that would otherwise require human intervention. Programmable logic controllers (PLCs) and remote terminal units (RTUs) are simple computing devices that automatically take action when certain conditions occur on the pad. But you thought this blog post was about fancy new high-tech radios – it is! Here’s where they come into the picture. Older radios transported sensor information from the well pad to an operations team, where they viewed the information and decided whether or not to take action. These radios generally transmitted at very low bandwidths (115Kbps-400Kbps), which severely limited the type and amount of data that could be transmitted. This limitation in many cases prevented companies from being able to take advantage of new automation technologies (like smart sensors and devices) that require more bandwidth. Today, companies like FreeWave Technology Inc. are leveraging technologies like TI’s SimpleLink™ Sub-1 GHz CC1310 wireless microcontroller (MCU) radio chipset as part of a new radio infrastructure that delivers much higher data rates. By combining the microcontroller, a highly optimized radio and an ARM® Cortex®-M3 48MHz application processor into one rugged, industrial-grade, low-power offering, well-pad automation can make a huge leap forward. These radio appliances can deliver data rates as high as 3.7Mbps over 20 miles in some cases, enabling oil producers to deploy more sensors and technologies that improve safety and operational efficiencies and reduce costs. Figure 1 below shows a picture of the FreeWave ZumLink Z9-PE IIoT Programmable Radio (IPR) with 512 MB of RAM and 1 GB of Flash. This device also runs third party and custom industrial applications.   Another cool thing about these radio appliances is that they are programmable. They come with an integrated circuit board (shown in Figure 2 below) equipped with an ARM processor; 512MB of RAM; 1GB of flash storage; and a Linux kernel with support for Python, Java, If This Then That (IFTTT) and many other programming languages. Deploying advanced intelligence into the sensor networks that run their production helps oil companies eliminate additional costs, gather and store more information, and engineer new applications that improve production and safety. Tank-flow management, intelligent security surveillance, data logging and pump shut-off are just a few of the applications that oil companies can deploy in these new networks. To learn more, feel free to check out the ZumLink IPR product page. More information on other products within the SimpleLink MCU platform is also available here. *This post was originally published on TI’s E2E Community blog, which can be found here.

The Wireless Oilfield

As the Industrial IoT (IIoT) drives connectivity everywhere, wireless technology has become a mainstay in the energy landscape. Modern oil and gas companies rely on wireless communication solutions to control, monitor and transfer critical data for the most critical field operations. As technology decision makers continue to seek new ways to connect the oilfield, they are inundated with options. However, if they desire networks that will remain relevant as technology rapidly changes, they need to be focused on finding wireless solutions that can handle modern data needs. Wireless I/O solutions In the oilfield, different applications have different needs. For example, many assets are operating in hazardous environments where explosive gas is present. The technology operating in these environments needs a C1D1 certification for safe operations. The good news is that there is wireless technology designed and certified to perform in these environments. C1D1 wireless Input/output (I/O) technology can perform to the standards that ensure both safety and connectivity for the modern oilfield. When wireless I/O is incorporated into small field networks, medium plant operations and/or large SCADA systems, operators can receive wireless sensor measurements, physical control and communications between remote controllers from a single device. In the simplest of terms, wireless I/O is wire replacement, where the wireless communications link emulates wire in an existing application. No changes are required to the system architecture. Rather, wireless links are used to transmit the same data that the physical wire once carried. With a C1D1 certification, wireless I/O solutions offer a much needed hard wire replacement for extremely remote assets in hazardous environments. Wireless Oilfield Applications As more sensors are added along the wireless oilfield, there are many different applications that can be pulled into the wireless network. New C1D1 wireless I/O communication technology also is designed to provide the communication link for the IIoT network in order to achieve the level of connectivity needed for today’s IoT driven-marketplace. There are a number of applications that can be leveraged by the wireless communication network including: Separator: monitoring of flow, high level alarm, pressures and temperatures Production tanks: C1D1-cerfied measurement and high level alarm Backhaul: data collection and transport from the wellhead to SCADA system Wellhead: pressure monitoring, including – casing, tubing and surface pressures. Additional applications include, flow, plunger lift, valve actuator, and arrival sensor Control Panel: wirelessly connect PLC/RTU/Flow computer to sensors, link to IIoT, I/O expansion Flarestack: monitor flares, temperature and thermocouple Chemical injections: monitor tank level and temperatures Compressor: monitoring of pressures temperatures and monitor/control on/off statuses. These are some of the many applications that can be connected with modern wireless technology. As the oil and gas industry continues to embrace wireless technology, special attention needs to be paid to the solutions that will still be relevant years down the road. A C1D1 certified wireless radio solution that connects to the IIoT network is an ideal solution that not only supports field assets, but is designed with the future of wireless communications in mind.      

Creating A Safer Environment with IoT

We can get a better understanding of the world around us by consistently monitoring our environment. The Internet of Things (IoT) has enabled large-scale environmental monitoring for commercial, industrial and research purposes. New innovations are constantly in progress that will allow us to make better, safer decisions in our everyday life and protect our environment. For example, imagine how much safer roads would be if your car could warn you about upcoming road hazards such as heavy snow or black ice based on weather and road condition data. When connected to an IoT network, modern technologies can also be used to collect data for weather predictions and monitoring. Oil and gas companies can better protect marine life and ocean environments with offshore leak detection systems. On land, residents living near coal power plant facilities can feel better about the air they breathe when air-quality is consistently monitored. Sensor-2-Server (S2S) communication and networking solutions are increasingly used to help monitor the quality of the environment to prevent and actively identify a number or potentially dangerous situations, such as hazardous material leaks and fugitive emissions. From environmental impact assessments and air quality monitoring to soil dynamics analysis, S2S solutions are meant to gather data from any sensor at any point in the IoT network and bring it back to a specific location to be acted upon. With S2S technology in place, operators can consistently gather and transmit data that affects the quality of life for the world population. It’s important to find a solution that has been proven in the harshest environments – that can withstand the weather extremes and volatile elements. Understanding Your Environment in Real-Time In many applications, especially when safety is the top priority, it is critical to review timely and accurate data to ensure there are no glaring issues with the environment. S2S technologies for environmental monitoring should offer real-time information, as well as large quantities of data that can be analyzed to understand trends through predictive analytics engines. Here are some additional applications where S2S solutions can be leveraged for environmental monitoring: CBRN Monitoring for protective measures where chemical, biological, radiological or nuclear warfare hazards may be present Fugitive Emissions Monitoring for volatile organic compounds (VOC) – this is especially common in oil and gas Leak Detection and Repair (LDAR) to ensure compliance with Environmental Protection Agency regulations. Subsea Monitoring for exploration, research and offshore oil and gas applications Levee Performance Testing to understand levee load capacity and prevent breaches. Water Level Monitoring to track rainfall or water levels in industrial settings. River Flow Monitoring to determine how much water flows through lakes and streams. Seismic Monitoring and volcanic monitoring to provide early detection of these events and enable authorities to warn citizens in advance to take appropriate precautionary measures. As we become increasingly connected to the world around us, we also gain visibility into the surrounding environmental conditions. This offers a wide and diverse range of industries a unique opportunity to monitor the environment in new ways and make intelligent decisions to prevent future negative impacts on the environment as a whole.

IIoT Top News: The Future of Wireless

Where wires once ruled the day, wireless data solutions are now entrenched into the very fabric of the business. It will be interesting to see what the future of wireless technology will be able to tackle. This past week, ITU Radio Communication Assembly met to figure out that very thing. The ITU only meets every three to four years, so it is important that they covered the current and expected wireless resolutions. Topping the list was a push for 5G systems expected to become a reality by 2020. 5G will offer extremely high definition video services, real-time low-latency applications and overall expansion of IoT. Yet another key point solved by the ITU meeting is that “RA-15 recognized that the globally connected world of IoT builds on the connectivity and functionality made possible by radio communication networks and that the growing number of IoT applications may require enhanced transmission speed, device connectivity, and energy efficiency to accommodate the significant amounts of data among a plethora of devices.” As the bright future of wireless grows across the globe, it will continue to evolve and transform the way we use wireless in our daily lives. ISA reported this week that automation is essential for the next-generation of industrial wireless. Businesses need to be switching to high-speed broadband wireless in order to capitalize on the technological applications available to move those industries forward. This surge to operate wirelessly has created a crowded technological highway, with everyone wanting their message to be heard. DARPA has recognized this noise and developed a RadioMap to detect radio frequency (RF) spectrum congestion. RadioMap is able to transmit this information through the radios already deployed for various reasons. This unique program helps create plans of action by identifying times when the frequency usage is jammed or clear, thus informing them of the best times to communicate. Now that the wireless traffic has been sorted, let’s consider the possibility of wireless power solutions. According to Oil Price, wireless power is already in use in some commercial spaces, and will continue to gain more support as technology improves. Michael McDonald with Oil Price boldly predicts wireless power could be used to support the massive energy needs of the defense and healthcare industries by 2016. Unfortunately, not everyone agrees that wireless technology has been a seamless transition. ECN recently asked a handful of industry experts about the challenges they face as they integrate wireless IoT into their business. For example, Vera Jorkitulppo, a senior product manager of GE’s embedded power product line at Critical Power Business, believes, “At the other end of the radio link, there will be a multitude of diverse IoT devices developed by innovative companies with new solutions to real-world consumer or industrial problems.” Now, the next-generation of wireless technology may have its challenges, but, overall, the future looks bright, so put on some shades and enjoy this evolution. Hope you enjoy this week’s reading. As always, tell us what we missed! The Future of Wireless Communication (MyBroadband) Last week, the ITU Radio Communication Assembly met to set the future direction of wireless communication.  At this year’s assembly, Hans Groenendaal from mybroadband reported back that they had “reached significant decisions that will influence the future development of radio communications worldwide in an increasingly wireless environment.”   Industrial Wireless Evolution (ISA) Establishing the next generation of industrial wireless classification, system requirements, I/O and network capabilities for the industry.  Soliman Al-Walaie writes, “Wireless technology is an essential business enabler for the automation world.”   What Wireless Networking Challenges Do You Foresee with the Onset of IoT? (ECN Mag) Jamie Wisniewski asked an assortment of experts what they see as possible wireless network problems with the integration of IoT. Greg Fyke, a marketing director of IoT wireless products at Silicon Labs, suggests that “There are three key wireless networking challenges for successful Industrial Internet of Things (IIoT) implementation, including reliable communication, security and control.”   Darpa’s RadioMap Detects RF Spectrum Congestion (GCN) An interconnected connected wireless world has created congested airways, thus making the management of military communication and intelligence gathering radio frequencies of critical importance. “RadioMap adds value to existing radios, jammers and other RF electronic equipment used by our military forces in the field,” said John Chapin, DARPA program manager.   Will 2016 Be the Year of Wireless Energy? (Oil Price) Oil Price looks at the possibility of wireless energy being able to support defense, healthcare and other massive energy needs in the near future, maybe even by 2016. Michael McDonald’s research shows that, “Wireless power has been a dream of mankind’s for decades, but the technology finally appears to be gaining some traction.”  

Guest Post: Keep the Data Flowing in Oil and Gas

By Joyce Deuley, Sr. Analyst and Director of Content at James Brehm & Associates LLC State of the Industry This year has proved challenging for oil and gas companies: falling prices, crackdowns from environmental regulations, growing concern about the destabilization of land due to fracking, as well as an increasing gap between jobs and skilled engineers to name a few issues. Royal Dutch Shell, for instance, recently terminated its plans to drill off the Arctic coast of Alaska for the “foreseeable future”—this is after $7 billion dollars and more than five years spent on exploratory drilling (with disappointing results) and the purchase of costly leases and permits for the privilege to do so (Daily Mail). The Arctic Circle has been viewed by many as a “holy grail” in terms of rich oil and gas reserves—the largely untapped Great White North, if you will. Initiatives in the Baltic have also come under discussion lately, as Russia negotiates the political quagmire it has found itself in concerning territorial disputes. Still, it isn’t all doom and gloom. Our reliance on oil and gas for manufacturing, shipping, transportation, energy, and more hasn’t dissipated—rather, it will continue to increase with the rising population and result in rapidly expanding urbanization. More food will need to be shipped globally, more cars will be driven, more homes will be heated, more materials will need to be made, etc., providing rich opportunities for oil and gas companies to invest in scalable solutions, as well as to firmly root themselves as valued players in the market. Investors, and other interested parties, are paying close attention to the oil and gas markets to better determine how best to mitigate depleted reserves and improve overall productivity and efficiency: keeping their bottom lines low and profit margins high. To pull back from an environmental and global perspective on the state of the industry, let’s instead bring it into a sharp focus with its current business challenges. Problems with efficiency include legacy pipeline and refinery infrastructure that hasn’t been updated or modernized in decades, a shortage of skilled labor as qualified engineers approach retirement, the need for increased monitoring and control across remote areas, and the mission-critical need for the aggregation, interpretation and management of unprecedented amounts of data. But, effectively managing that data can present major challenges for oil and gas providers: with so many devices at the edge, they are practically drowning in the seemingly endless flood of information that is collected. The need to find reliable data management platforms that help remove complexities associated with data visualization is critical for these companies’ ability to identify and enact valuable business decisions. What to Do About It It is no secret that the Internet of Things (IoT) has proven to be disruptive across a myriad of markets. While the technologies and principles of the IoT have been around for decades, predominantly within the manufacturing and processing industries, its relatively nascent presence within the consumer electronics and wearables markets has helped rebrand the IoT with a level of “sexiness” it previously lacked. But at the heart of the IoT is a near-obsessive desire to decrease operational and deployment costs, meet compliance regulations and to dramatically increase productivity and efficiencies. The oil and gas industry happens to be one of the largest growing areas for IoT deployments and has found many ways to benefit from connected solutions, such as pipeline and wellhead monitoring. Oil and gas pipelines can span across hundreds of miles of rugged terrain. The ability to monitor such a territory can be challenging, as harsh winters and debilitating droughts, forest fires and or heavy rains can put stress on the integrity of a pipeline, plus the remote nature of its location can prevent technicians from being able to regularly service it. Another challenge is knowing when and specifically where a problem occurs. For instance, if there is a malfunction that results in a leak along one of the more remote sections of a pipeline and there is no sensor to alert someone, we could be looking at a nightmare of a situation: environmental damages, not to mention untold amounts of costly clean up, repairs and definitive losses to the oil and gas company at large. By utilizing connected sensors along the lengths of their pipelines, oil and gas companies can overcome these challenges and monitor flow, pressure, integrity of the pipeline and more. Empowered by the IoT, oil and gas providers can receive near real-time information about their entire operation, enabling decision makers to better manage their technicians, as well as improve overall production and reduce maintenance and operational costs. As oil and gas companies wait for the stock market to pivot from $50 a barrel, they need to look seriously at implementing business solutions that are going to help them weather this lull. The IoT provides many opportunities for oil and gas providers to tighten their belts by increasing efficiencies and production, ultimately reflecting in a more cushioned bottom line. Pipeline monitoring and control applications can help reduce non-productive times by up to 30%, which is just one small example of how dynamic transformations could be made by the IoT. About Joyce Deuley As Sr. Analyst and Director of Content, Joyce researches and interprets market trends, locates opportunities for growth, and researches the current happenings in the M2M and IoT space, providing our clients with up-to-date and actionable information. Joyce specializes in technical communication, translating complex data into layperson-accessible presentations, articles, and white papers. Additionally, Joyce manages, contributes, edits, and designs our newsletter, The Connected Conversation. She currently offices out of, and is a founding member of Geekdom, a tech accelerator-like co-working space in San Antonio, TX. Previously, Joyce worked as a Secondary Researcher at Compass Intelligence, learning the M2M markets alongside James Brehm. While at Compass Intelligence, she gained experience in market research, competitive analysis, content strategy, as well as qualitative research. Joyce graduated with a B.A. in English, focusing on Professional and Technical Communication, from the University of the Incarnate Word (UIW) in San Antonio. She

Big Data: Election Analytics and More

During the 2016 election season, we’ve seen considerable media coverage on big data and predictive analytics.  The access to massive quantities of data has played an increasingly important role not only for predicting the election winner, but also for driving candidates’ campaigns. During the 2012 election we saw political data science and big data leveraged by campaign managers to tap into the public opinions of the candidates. The information garnered from those data points led to decisions that shaped campaign strategies. Since 2012, we’ve seen substantial advancements in political data analytics. A recent Forbes article explains this well, “In recent years, political data analytics has advanced from simple micro targeting to true predictive data science, and the track record is good. Some of the brightest minds in the field are using massive amounts of data, complex models and advanced algorithms to determine the best way to appeal to big swathes of the electorate without alienating possible converts.” A GOP strategist recently claimed that analysts have about 400 data points stored for the average American voter and noted that they are constantly querying the database for insight. Predictive Analytics is an increasingly useful and complex practice — and it is not limited to presidential elections. It can be used in almost every industry to drive intelligent and informed business decisions. First, let’s define predictive analytics in relation to this post. This definition from TechTarget highlights the role of statistical analysis and machine learning to arrive at an actionable model: “Predictive analytics is a form of advanced analytics that uses both new and historical data to forecast future activity, behavior and trends. It involves applying statistical analysis techniques, analytical queries and automated machine learning algorithms to data sets to create predictive models that place a numerical value, or score, on the likelihood of particular events happening.” Beyond the Election With the rise of the Internet of Things (IoT) we are currently seeing predictive analytics leveraged for applications across industries to help organizations make better operating decisions. Here are a few application examples recently highlighted in Forbes: Models designed to predict where crimes will be committed Predicting the price of oil Insight into how upcoming events might influence a business Predicting the probability of success for a startup Identifying trends in the academic literature Predictive Analytics and S2S Communications Today, there are technology solutions designed for intelligence-enabled decision making. Sensor-2-Server (S2S) communication solutions in particular, help meet the increasing demand for data. S2S by definition is an intelligent communication that begins at the sensor level and targets servers for specific reasons. With an intelligent communication system to enable predictive analytics, operators can leverage new technology to improve the profitability of their businesses. As an example, let’s look at the one of the predictive analytics use cases listed above– a model for predicting the price of oil.  If an oil and gas company has an intelligent system in place, it can respond in real-time to its oil production levels. The data can help operators determine if production should be increased or decreased in certain areas to maximize profitability. Predictive Analytics Recap Predictive analytics engines allow organizations to analyze more data, faster. Key decision makers gain insight into trends and patterns that may be otherwise overlooked. They can make intelligent predictions that shape business operations and strategy. With the right techniques in place, an organization will make better decisions, cut costs and increase profitability. And for those who are running for public office? They now have more insight into the opinions and trends for voters than ever before. This has changed the game in a lot of ways because campaigns can be tailored to an audience based on specific data.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.