2017 Analyst Predictions – Industrial IoT

Predictions can be enlightening as we round out the end of the year, and industry analysts covering the Industrial Internet of Things (IIoT) have begun forecasting what to expect in 2017. In the ever changing digital business landscape, companies need to keep a pulse on the technology and regulatory environments to have direction on where to focus their efforts. Over the past few years, IIoT has taken on the shared title of industry 4.0, as new ways of connecting businesses and consumers impact systems infrastructures and technology integrations across many, if not all. business lines. In honor of reigning in 2017 as a strong year for the industrial internet, we have dedicated this week’s round up to highlight some of the top IIoT analyst predictions in the coming year. Gartner Predictions: Surviving the Storm Winds of Digital Disruption  By  Daryl C. Plummer, Martin Reynolds, Charles S. Golvin,  Allie Young, Patrick J. Sullivan, Alfonso Velosa, Benoit J. Lheureux, Andrew Frank, Gavin Tay, Manjunath Bhat, Peter Middleton, Joseph Unsworth, @rayval, @DavidFurl, Werner Goertz, @JCribbs_Gartner, Mark A. Beyer, @Alex42Linden, @noahelkin, @nheudecker, Tom Austin, @mc_angela, Fabio Chesini, Hung LeHong | Published on @Gartner_inc “Digital business innovation creates disruptive effects that have a wide-ranging impact on people and technology. However, secondary ripple effects will often prove to be more disruptive than the original disruption. Digital strategists must actively identify secondary effects when planning change.” Gartner Also Suggests That its Time to, Harness IoT Innovation to Generate Business Value By @chetster | Published on @Gartner_inc “The Internet of Things is moving beyond concepts and trials, and has begun to deliver business benefits across a range of industries. Studying innovation and how early use cases have fared will help CIOs and IT leaders capture business value.”   Forrester Predictions 2017: Cybersecurity Risks Intensify By @AmyDeMartine, Jeff Pollard, @infosec_jb, @acser, @heidishey, Christopher McClean, @jz415, @merrittmaxim, @sbalaouras, Trevor Lyness, Peggy Dostie | Published on @forrester “The connected world has arrived; we live and work in it. In this new reality, the next 12 months will see battles rage that will determine the amount of control individuals have over their own data and right to privacy as well as the offensive and defensive responsibilities of our governments. This report guides security and risk (S&R) pros through five predictions for 2017 that highlight escalating ramifications of poor security hygiene and how to mitigate potential damage.”   Ovum 2017 Trends: Radio Access Networks By @sonixag | Published on @OvumICT “This is part of Ovum’s 2017 Trends to Watch series. This report looks at what Ovum believes will be the major trends next year when it comes to the radio access network (RAN) market.The RAN market remains a challenging area and the need for spectrum remains a constant concern. RAN vendors are looking for new growth areas, and everybody wants 5G and they want it now. All of these factors are driving market trends.”   IDC 2017 Forecast: Manufacturing Worldwide By @kimknickle, Simon Ellis, @hashtonIDC, Christopher Holmes, @jeffhojlo, @ivanoortis, @VeronesiLor, Jing Bing Zhang | Published on @IDC “This IDC study provides manufacturers with the top 10 predictions and underlying drivers that we expect to impact manufacturers’ IT investments in 2017 and beyond. Technology leaders and their counterparts in the line-of-business (LOB) operations can use this document to guide their IT strategic planning efforts. According to Kimberly Knickle, research vice president, IT Priorities and Strategies, IDC Manufacturing Insights, “Technology continues to reshape the relationship between business and IT for innovation and digital transformation. Manufacturers want to work smarter using digital technologies in their products and processes and throughout the value chain. Our predictions create a framework for IT and line-of-business executives to plan and execute technology-related initiatives in the year ahead.”   As we conclude our highlights this week, we should realize these predictions are just the tip of the digital iceberg anticipated for 2017. The future could see more intelligent technologies communicating in industry 4.0 with machines processing more data. We could also expect to finally dig deeper into our IoT connected understanding. All we can do is hold tight as the next corner of digital transformation unfolds.

Top News: Unmanned Aircrafts Taking Flight

As we near the end of 2016, it’s hard to ignore the current and potential impact that Unmanned Aerial Systems (UAS) technology has on society. News reports from around the world continue to highlight many instances of unmanned aircrafts taking to the skies. As the Federal Aviation Administration (FAA) and other international airspace regulatory bodies continue opening up the airways for new technology deployments, businesses look to be in a prime position to leverage numerous unmanned flights around the globe. Despite the continued pressures on government agencies to make UAS deployable in commercial airspace, regulators and safety officials still tend to err on the side on caution. Numerous testing sites and operations have already begun in hopes of helping to define and implement the safety protocols UAS operators need to follow. However, will regulators allow UAS to fly “out of sight” missions one day? Will retailers finally get approval for the chance to deliver packages via drones? How will airport officials help coalesce flight patterns from both manned and unmanned systems? Only time will tell, but as the excitement around UAS grows, we’ll keep a keen eye on the developments and use cases. Take a moment to enjoy this week’s highlights of the top UAS coverage throughout the past week. FAA to Conduct Unique Drone Testing at DIA By @CBS4Jeff | Published on @CBSDenver “Unique drone testing is going on at Denver International Airport. The only other testing like it has been done at JFK Airport in New York and at Atlantic City Airport. Now testing is looking at how to identify and control drones near airliners in Denver.”   NASA Proves Out of Sight UAS Operations By @NASAAmes | Published on @UASMagazine “During the test, two of the drones flew beyond their commanders’ lines of sight. As many as two drones were operated in the same test airspace, separated by altitude and within sight of their operators. The pilots used the NASA-developed UTM research platform to gain information about all the drones’ locations and proximity to other air traffic and hazards. UTM also informed other airspace users of potential hazards and conflicting operations that could affect their plans.”   Flight at the Bay Shows UAS Role in Emergencies By GPS World Staff | Published on @GPSWorld “The test also helped Shore Regional Health explore new ways of providing access to medical care to rural areas, according to William Huffner, Shore’s chief medical officer. UAS technology has the potential to bring supplies not only to medical staff, but also directly to patients in isolated areas.”   The future is here: UAS are delivering Domino’s pizzas to customers By @mcwm  | Published @qz “To order a pizza with a drone, a customer has to opt into the service, and can then order online or through the Domino’s app to get the pie they desire. Right now, Domino’s told Quartz, the drones have a delivery radius of 1.5 km (about one mile) from the Whangaparaoa store, but the company is aiming to expand that to about 10 km (roughly six miles).”   Disney Plans to Fly Over 300 UAS Every Night This Winter at Disney World by @aprilaser | Published on @Recode “In August, after the Federal Aviation Administration released the drone rules for commercial operators, Intel was granted a waiver to fly an unlimited number of its Shooting Star drones per pilot at night over any uncontrolled airspace in the country.”   As we conclude this week’s unmanned aircraft edition, we hope to have inspired, informed and most of all entertained with all the possibilities of UAS taking flight. Reliable IoT connectivity and data communications are key to opening doors to what some deemed impossible to happen. It’s time to embrace these new technologies and discover what the future will unleash for the next-gen airspace.

Connected Traffic Management Systems

Connected traffic systems are the next push in our growing digital world. There is a massive opportunity to leverage modern technology for a variety of traffic applications. The rise of the Internet of Things (IoT) has led to advancements within many municipalities to optimize public transit, traffic management and public safety. As a result, cities around the country are looking to technology and connected devices to reduce congestion and improve traffic flow. Connected Traffic Systems Technology U.S. Commuters spend 14.5 million hours stuck in traffic every day. The Urban Mobility Scorecard from 2015 reported that commuters generally needed to allow 48 minutes for a trip that would take 20 without traffic. The report predicted that conditions would continue to worsen if dedicated programs, policies and projects are not expanded. From a public transportation perspective, many cities are dealing with outdated infrastructure that can lead to severe delays and transportation outages. Voters in San Francisco, for example, recently approved a measure for a $3.5 billion regional bond to update its aging BART transportation system. In addition to investing in and fixing ageing infrastructure, U.S. cities also aim to become smarter and prepare for the future by leveraging technology. The U.S. Department of transportation has recently offered nearly $65 million in grants to cities around the country that are working on advanced transportation initiatives. The grants support a number of projects including traffic signal technology to reduce congestion at street lights, transit trip planning technology and applications, ride-sharing services, and more. While the cities work on the ground, there are also efforts to improve air traffic congestion. AT&T recently announced that it is partnering with the National Aeronautics and Space Administration (NASA) to develop a traffic management system for drones. Sensor-2-Server for Traffic Management Sensor-2-Server (S2S) solutions offer reliable connectivity options for municipalities looking to fix traffic flow issues and create smoother traffic management. By leveraging S2S operations, the city or municipality can enable intelligent communications at the edge of the communication network, from the sensor at the traffic light back to a specific server, enabling advanced data analytics. Cities with outdated communication infrastructures, such as a T1 phone line for traffic control systems, can easily update their network with wireless S2S solutions. S2S technologies are created to perform in extreme weather, offering a real-time monitoring solution around the clock. The cost of operations is significantly reduced with S2S solutions and they deliver the connectivity needed for modern IoT networks. Some S2S solutions are equipped with the ability to introduce custom, third-party applications at the edge, which can help reduce costs and enable new automation capabilities. As cities throughout the U.S. embrace IoT and work to become Smart Cities, traffic management is a major initiative. While cities work to improve aging infrastructure, they can help improve traffic congestion by incorporating a traffic management system that can leverage data from an S2S network to optimize traffic flow.

Creating A Safer Environment with IoT

We can get a better understanding of the world around us by consistently monitoring our environment. The Internet of Things (IoT) has enabled large-scale environmental monitoring for commercial, industrial and research purposes. New innovations are constantly in progress that will allow us to make better, safer decisions in our everyday life and protect our environment. For example, imagine how much safer roads would be if your car could warn you about upcoming road hazards such as heavy snow or black ice based on weather and road condition data. When connected to an IoT network, modern technologies can also be used to collect data for weather predictions and monitoring. Oil and gas companies can better protect marine life and ocean environments with offshore leak detection systems. On land, residents living near coal power plant facilities can feel better about the air they breathe when air-quality is consistently monitored. Sensor-2-Server (S2S) communication and networking solutions are increasingly used to help monitor the quality of the environment to prevent and actively identify a number or potentially dangerous situations, such as hazardous material leaks and fugitive emissions. From environmental impact assessments and air quality monitoring to soil dynamics analysis, S2S solutions are meant to gather data from any sensor at any point in the IoT network and bring it back to a specific location to be acted upon. With S2S technology in place, operators can consistently gather and transmit data that affects the quality of life for the world population. It’s important to find a solution that has been proven in the harshest environments – that can withstand the weather extremes and volatile elements. Understanding Your Environment in Real-Time In many applications, especially when safety is the top priority, it is critical to review timely and accurate data to ensure there are no glaring issues with the environment. S2S technologies for environmental monitoring should offer real-time information, as well as large quantities of data that can be analyzed to understand trends through predictive analytics engines. Here are some additional applications where S2S solutions can be leveraged for environmental monitoring: CBRN Monitoring for protective measures where chemical, biological, radiological or nuclear warfare hazards may be present Fugitive Emissions Monitoring for volatile organic compounds (VOC) – this is especially common in oil and gas Leak Detection and Repair (LDAR) to ensure compliance with Environmental Protection Agency regulations. Subsea Monitoring for exploration, research and offshore oil and gas applications Levee Performance Testing to understand levee load capacity and prevent breaches. Water Level Monitoring to track rainfall or water levels in industrial settings. River Flow Monitoring to determine how much water flows through lakes and streams. Seismic Monitoring and volcanic monitoring to provide early detection of these events and enable authorities to warn citizens in advance to take appropriate precautionary measures. As we become increasingly connected to the world around us, we also gain visibility into the surrounding environmental conditions. This offers a wide and diverse range of industries a unique opportunity to monitor the environment in new ways and make intelligent decisions to prevent future negative impacts on the environment as a whole.

IIoT Top News: The Future of Wireless

Where wires once ruled the day, wireless data solutions are now entrenched into the very fabric of the business. It will be interesting to see what the future of wireless technology will be able to tackle. This past week, ITU Radio Communication Assembly met to figure out that very thing. The ITU only meets every three to four years, so it is important that they covered the current and expected wireless resolutions. Topping the list was a push for 5G systems expected to become a reality by 2020. 5G will offer extremely high definition video services, real-time low-latency applications and overall expansion of IoT. Yet another key point solved by the ITU meeting is that “RA-15 recognized that the globally connected world of IoT builds on the connectivity and functionality made possible by radio communication networks and that the growing number of IoT applications may require enhanced transmission speed, device connectivity, and energy efficiency to accommodate the significant amounts of data among a plethora of devices.” As the bright future of wireless grows across the globe, it will continue to evolve and transform the way we use wireless in our daily lives. ISA reported this week that automation is essential for the next-generation of industrial wireless. Businesses need to be switching to high-speed broadband wireless in order to capitalize on the technological applications available to move those industries forward. This surge to operate wirelessly has created a crowded technological highway, with everyone wanting their message to be heard. DARPA has recognized this noise and developed a RadioMap to detect radio frequency (RF) spectrum congestion. RadioMap is able to transmit this information through the radios already deployed for various reasons. This unique program helps create plans of action by identifying times when the frequency usage is jammed or clear, thus informing them of the best times to communicate. Now that the wireless traffic has been sorted, let’s consider the possibility of wireless power solutions. According to Oil Price, wireless power is already in use in some commercial spaces, and will continue to gain more support as technology improves. Michael McDonald with Oil Price boldly predicts wireless power could be used to support the massive energy needs of the defense and healthcare industries by 2016. Unfortunately, not everyone agrees that wireless technology has been a seamless transition. ECN recently asked a handful of industry experts about the challenges they face as they integrate wireless IoT into their business. For example, Vera Jorkitulppo, a senior product manager of GE’s embedded power product line at Critical Power Business, believes, “At the other end of the radio link, there will be a multitude of diverse IoT devices developed by innovative companies with new solutions to real-world consumer or industrial problems.” Now, the next-generation of wireless technology may have its challenges, but, overall, the future looks bright, so put on some shades and enjoy this evolution. Hope you enjoy this week’s reading. As always, tell us what we missed! The Future of Wireless Communication (MyBroadband) Last week, the ITU Radio Communication Assembly met to set the future direction of wireless communication.  At this year’s assembly, Hans Groenendaal from mybroadband reported back that they had “reached significant decisions that will influence the future development of radio communications worldwide in an increasingly wireless environment.”   Industrial Wireless Evolution (ISA) Establishing the next generation of industrial wireless classification, system requirements, I/O and network capabilities for the industry.  Soliman Al-Walaie writes, “Wireless technology is an essential business enabler for the automation world.”   What Wireless Networking Challenges Do You Foresee with the Onset of IoT? (ECN Mag) Jamie Wisniewski asked an assortment of experts what they see as possible wireless network problems with the integration of IoT. Greg Fyke, a marketing director of IoT wireless products at Silicon Labs, suggests that “There are three key wireless networking challenges for successful Industrial Internet of Things (IIoT) implementation, including reliable communication, security and control.”   Darpa’s RadioMap Detects RF Spectrum Congestion (GCN) An interconnected connected wireless world has created congested airways, thus making the management of military communication and intelligence gathering radio frequencies of critical importance. “RadioMap adds value to existing radios, jammers and other RF electronic equipment used by our military forces in the field,” said John Chapin, DARPA program manager.   Will 2016 Be the Year of Wireless Energy? (Oil Price) Oil Price looks at the possibility of wireless energy being able to support defense, healthcare and other massive energy needs in the near future, maybe even by 2016. Michael McDonald’s research shows that, “Wireless power has been a dream of mankind’s for decades, but the technology finally appears to be gaining some traction.”  

Guest Post: Keep the Data Flowing in Oil and Gas

By Joyce Deuley, Sr. Analyst and Director of Content at James Brehm & Associates LLC State of the Industry This year has proved challenging for oil and gas companies: falling prices, crackdowns from environmental regulations, growing concern about the destabilization of land due to fracking, as well as an increasing gap between jobs and skilled engineers to name a few issues. Royal Dutch Shell, for instance, recently terminated its plans to drill off the Arctic coast of Alaska for the “foreseeable future”—this is after $7 billion dollars and more than five years spent on exploratory drilling (with disappointing results) and the purchase of costly leases and permits for the privilege to do so (Daily Mail). The Arctic Circle has been viewed by many as a “holy grail” in terms of rich oil and gas reserves—the largely untapped Great White North, if you will. Initiatives in the Baltic have also come under discussion lately, as Russia negotiates the political quagmire it has found itself in concerning territorial disputes. Still, it isn’t all doom and gloom. Our reliance on oil and gas for manufacturing, shipping, transportation, energy, and more hasn’t dissipated—rather, it will continue to increase with the rising population and result in rapidly expanding urbanization. More food will need to be shipped globally, more cars will be driven, more homes will be heated, more materials will need to be made, etc., providing rich opportunities for oil and gas companies to invest in scalable solutions, as well as to firmly root themselves as valued players in the market. Investors, and other interested parties, are paying close attention to the oil and gas markets to better determine how best to mitigate depleted reserves and improve overall productivity and efficiency: keeping their bottom lines low and profit margins high. To pull back from an environmental and global perspective on the state of the industry, let’s instead bring it into a sharp focus with its current business challenges. Problems with efficiency include legacy pipeline and refinery infrastructure that hasn’t been updated or modernized in decades, a shortage of skilled labor as qualified engineers approach retirement, the need for increased monitoring and control across remote areas, and the mission-critical need for the aggregation, interpretation and management of unprecedented amounts of data. But, effectively managing that data can present major challenges for oil and gas providers: with so many devices at the edge, they are practically drowning in the seemingly endless flood of information that is collected. The need to find reliable data management platforms that help remove complexities associated with data visualization is critical for these companies’ ability to identify and enact valuable business decisions. What to Do About It It is no secret that the Internet of Things (IoT) has proven to be disruptive across a myriad of markets. While the technologies and principles of the IoT have been around for decades, predominantly within the manufacturing and processing industries, its relatively nascent presence within the consumer electronics and wearables markets has helped rebrand the IoT with a level of “sexiness” it previously lacked. But at the heart of the IoT is a near-obsessive desire to decrease operational and deployment costs, meet compliance regulations and to dramatically increase productivity and efficiencies. The oil and gas industry happens to be one of the largest growing areas for IoT deployments and has found many ways to benefit from connected solutions, such as pipeline and wellhead monitoring. Oil and gas pipelines can span across hundreds of miles of rugged terrain. The ability to monitor such a territory can be challenging, as harsh winters and debilitating droughts, forest fires and or heavy rains can put stress on the integrity of a pipeline, plus the remote nature of its location can prevent technicians from being able to regularly service it. Another challenge is knowing when and specifically where a problem occurs. For instance, if there is a malfunction that results in a leak along one of the more remote sections of a pipeline and there is no sensor to alert someone, we could be looking at a nightmare of a situation: environmental damages, not to mention untold amounts of costly clean up, repairs and definitive losses to the oil and gas company at large. By utilizing connected sensors along the lengths of their pipelines, oil and gas companies can overcome these challenges and monitor flow, pressure, integrity of the pipeline and more. Empowered by the IoT, oil and gas providers can receive near real-time information about their entire operation, enabling decision makers to better manage their technicians, as well as improve overall production and reduce maintenance and operational costs. As oil and gas companies wait for the stock market to pivot from $50 a barrel, they need to look seriously at implementing business solutions that are going to help them weather this lull. The IoT provides many opportunities for oil and gas providers to tighten their belts by increasing efficiencies and production, ultimately reflecting in a more cushioned bottom line. Pipeline monitoring and control applications can help reduce non-productive times by up to 30%, which is just one small example of how dynamic transformations could be made by the IoT. About Joyce Deuley As Sr. Analyst and Director of Content, Joyce researches and interprets market trends, locates opportunities for growth, and researches the current happenings in the M2M and IoT space, providing our clients with up-to-date and actionable information. Joyce specializes in technical communication, translating complex data into layperson-accessible presentations, articles, and white papers. Additionally, Joyce manages, contributes, edits, and designs our newsletter, The Connected Conversation. She currently offices out of, and is a founding member of Geekdom, a tech accelerator-like co-working space in San Antonio, TX. Previously, Joyce worked as a Secondary Researcher at Compass Intelligence, learning the M2M markets alongside James Brehm. While at Compass Intelligence, she gained experience in market research, competitive analysis, content strategy, as well as qualitative research. Joyce graduated with a B.A. in English, focusing on Professional and Technical Communication, from the University of the Incarnate Word (UIW) in San Antonio. She

Ships that Sail Themselves

Is it time for ships to sail off on a journey by themselves? As the Internet of Things (IoT) connects the world, while the robotics industry continues to innovate, man and machine are merging together like never before. Unmanned aerial vehicles (UAVs) have impacted a number of industries from agriculture to security. If recent news is correct, it won’t be long before autonomous cars are traveling roads alongside us. Now, organizations and government agencies around the world are actively working to bring autonomous vessels to our oceans. What can we expect from unmanned ships operating in our largest bodies of water? IoT and robotics are being considered for a variety of commercial and military purposes at sea. For most of the world, it seems autonomous ships are in the testing phase, but there are big plans in the works around the globe: The British engine maker Rolls Royce Holdings, PLC is leading the Advanced Autonomous Waterborne Applications initiative with several other organizations and universities. The company is eyeing a timeline of remotely controlled ships setting sail by 2030 with completely autonomous ships in service by 2035. The timeline will be heavily dependent upon automation technologies’ ability to carry large amount of data from ship to shore to ensure safe operations. Recently, the UK’s Automated Ships Ltd and Norway’s Kongsberg Maritime, unveiled plans for a light-duty ship for surveying, delivering cargo to offshore installations and launching and recovering smaller remote-controlled and autonomous vehicles. “This ship is considered the world’s first unmanned ship for offshore operations and is being eyed for many uses including offshore energy, fish farming and scientific industries.” In the U.S., the Navy has begun to consider autonomous ships for a number of applications, but is cautiously approaching these new technology advancements. According to National Defense Magazine, “The Navy for now appears to be in no hurry to pour big money into drone ships and submarines. And there is little tolerance these days for risky gambles on technologies.” However, the article acknowledges that robots at sea could help do the jobs that are dangerous or costly for human operators, such as hunting enemy submarines, detonating sea mines, medical evacuations and ship repairs. The European Union (EU) appears to have a vested interest in sea robotics. As infrastructure costs rise for improving rails and roads, they have begun to seek alternative ways to move large quantities of cargo. According to Maritime Executive they have, “had a long-term goal of making short sea shipping more competitive with road and rail transport, which is under stress from the transportation bottlenecks caused by increasing volumes of internal trade.” As the EU faces massive infrastructure costs to upgrade road and rail, there is increased attention and effort directed at the “motorways of the sea.” The Defense Advanced Research Projects Agency (DARPA) has been testing a robotic ship called the “Continuous Trail Unmanned Vessel,” and has been running sea trials on its radar system. The radar is fastened to a parasail that enables heights of 500-1,500 feet. These are just a few of the autonomous vessel projects in the works. In order for unmanned vessels to operate, it is clear the ability to transport data in massive amounts will play a critical role in the success and safety of those sharing the sea with autonomous ships. As technologies evolve to meet these big data needs, we can eventually expect to see more unmanned vessels in the sea, improving offshore applications, making human jobs safer, and creating new efficiencies for organizations looking to optimize international trade.

IIoT Top News: What the Industry Experts Say

Living in a 24-7 news cycle, it is best to take a break from all your favorite news outlets and go back to the basics. Industry analysts today are charged with giving their audience an unbiased report of their findings, that’s why this week’s top IIoT news is dedicated to seeking out some of the industry expert opinions in this ever-changing digital world. Let’s start by looking at Ovum’s 2015 key theme for the oil & gas industry. According to Ovum, more modernization of IT platforms will continue to help reduce the disconnect from the IT stone-age equipment to the modern real-time IIoT, thus allowing companies to improve their overall decision making process. A closer look at Forrester, we find security topping the list for 2016. In a recent report, Forrester is quick to call out the shortsighted firms for not realizing the importance of implementing proper security measures to protect the collection of data. It is recommended that firms stop focusing on the lowest possible cost to secure data, and turn the focus into the best way to keep and maintain quality information safely. On another digital front, Gartner predicts that by 2016 6.4 billion IoT devices will be in use, and only sees that number soaring with an estimated 20.8 billion things connected by 2020. Overall, we heard about the need to bring ethics to data, and predictions of how data will be turned into insight and action in the coming year. Other reports included the top digital trends and how those trends fit into the new digital mesh landscape. Additionally, we learned about revolutionary IIoT operational ideas for the future and a big data forecast for 2016 and beyond. Hope you enjoy this week’s research related reading! Bringing ethics to data, a board-level agenda item (OVUM) The challenge facing companies today is, what practices should be put in place to handle the large scale, data being collected. Tom Pringle reiterates the assertive stance Ovum has taken when it comes to the ethics of big data, “If data holds the potential to benefit many, it also has the potential to harm many (as an unexpected outcome, or purposefully negative).”   Forrester’s 2016 Predictions: Turn Data into Insight and Action In the 2016 Forrester predictions, Brian Hopkins, Enterprise Architecture Professional has broken the it up with three major shifts, that will help turn data into insight and action. Hopkins is quoted as saying, “Machine learning will replace manual data wrangling and data governance dirty work.”   Top Ten Digital Trends Signal the Digital Mesh (Gartner) David Clearley, vice president and Gartner fellow details the top digital trends and how those trends fit into the new digital mesh landscape. The fifth trend on Gartner’s list is advanced machine learning, Clearley believes that, “Advanced machine learning is what makes smart machines appear “intelligent” by enabling them to both understand concepts in the environment, and also to learn.” This area is quickly evolving, now is the time to figure out what technologies your company needs so you can have the competitive advantage.   Convergence in the Plant Asset Management (PAM) Market (Frost & Sullivan) In this detailed plan from Frost & Sullivan, they see IoT driving the next generation of improvements with predictive analytics. Furthermore, in the plant asset management (PAM) market Frost & Sullivan sees the, “Industry initiatives, including Industry 4.0, Smart Manufacturing, and applications of Internet of Industrial Things (IoT) technologies are revolutionizing operations and maintenance, enabling the cost-effective connectivity of a wide variety of asset classes.”   New IDC Forecast Sees Worldwide Big Data Technology and Services Market Growing to $48.6 Billion in 2019 A new report from IDC forecasts the enormous expansion of both big data worldwide and the services market by 2019. IDC predicts that, “The Big Data market continues to exhibit strong momentum as businesses accelerate their transformation into data-driven companies.”  

Staying Connected at the Ski Resort

Getting connected at the ski resort, sounds like a dream come true. We can all probably admit that we often have an expectation for Wi-Fi availability at most places we go – our hotels, coffee shops, restaurants, shopping centers and more. Now, Wi-Fi is popping up in the places we would have ruled out for connectivity several years ago. Places like golf courses, campgrounds, marinas and ski resorts. This is catching on quickly. It is becoming a necessity to offer Wi-Fi at ski resorts and this is largely due to the fact that modern technology can allow it. The rise The Internet of Things (IoT) has opened the door to not only connectivity everywhere, but data that allows us to make better decisions. There are apps available today that allow skiers to compare lift line times and identify their location on a trail map. While the concept of complete connectivity is quickly catching on, there are still challenges to overcome. For example, Wi-Fi signals can be limited in strength; especially in snow-packed, rugged outdoor environments at ski resorts where temperatures are consistently well below the freezing-point. Connectivity at the Ski Resort Because the majority of their operations are outdoors, ski resorts require a rugged Wi-Fi option. This is true for all outdoor Wi-Fi applications – whether it’s a campground, marina, golf course or any other outdoor-based business. Each will face challenges due to varying landscapes and weather extremes. These businesses looking to bring connectivity to customers need to find a shorthaul solution that is rugged and secure enough to remain connected in the most extreme elements. They also need to enable high-speed, high throughput application solutions. In addition bringing connectivity to ski resorts – we’ve seen increased adoption of industrial Wi-Fi networks for security programs and disaster response. For the skiing industry, this may be beneficial to avalanche and rescue teams. With the added ability to track skiers on the mountain, as well as send targeted warning or emergency alert messages across the network, resorts would have an additional tool in the arsenal to facilitate safety measures across wide areas. Having reliable Wi-Fi during emergency communications, especially high-speed Voice, Video, Data and Sensor (VVDS) data transport, can help ensure secure lines of communication during emergency or disasters. Additionally, resorts can leverage the secure network from VVDS enabled Wi-Fi to increase resort security. The Rugged Solution Solutions are available today that will help ski resorts stay connected. These types of technologies are used every day in highly industrial environments like oil and gas, water/wastewater and even by the military. They function in the most remote, volatile, exposed environments. Now, they can be used in innovative ways to bring connectivity to ski resorts. Whether a ski resort wants to offer Wi-Fi to guests so they can better access their skiing apps and GPS, or if it’s to create a secure communication link for emergencies and rescue efforts – these solutions are designed to ensure connectivity. They offer robust, secure transport of VVDS information over rugged, shorthaul communication networks for edge devices and outdoor assets. They are specifically designed for outdoor Wi-Fi connectivity that has been tested and proven in extreme weather and environmental conditions.