IIoT News Roundup: How IoT is Saving Lives

In the past several weeks, there have been two massive natural disasters in the U.S., as Hurricane Harvey made landfall in Texas, bringing historic flooding to Houston and surrounding areas, and Hurricane Irma devastated parts of the Caribbean and Florida. Sadly, thousands of people find themselves without power, food and shelter. It is indeed a terrible tragedy and our hearts go out to those affected. In this devastation, however, there is a story emerging about the role the Internet of Things (IoT) has played in disaster preparedness. Indeed this technology has matured to the point that it is making a real and measurable impact in helping communities prepare for, respond to, and recover from disaster. In today’s IIoT news roundup, we will take a look at several stories emerging around disaster preparedness, smart cities and the IoT. Disaster Response in the 21st Century: Big Data and IoT Saves Lives In this story from Forbes, author Chris Wilder describes some of the ways the IoT and other technologies have changed the way disasters are predicted and responded to. Specifically, Wilder cites the ways crowd sourced emergency applications have made post-disaster communication and emergency dispatch easier and more streamlined. Further, Wilder speaks to the ways Big Data generated from sensors and meters throughout the region helped give more advanced notice to impacted areas and helped predict the path of these hurricanes with greater accuracy. IoT’s Role in Natural Disasters like Harvey In this article from IoT for All, author Hannah White discusses how the advent of the IoT has fundamentally changed the way hurricanes are predicted and responded to. Specifically, White discusses how open data was used to list Red Cross shelters with space availability, as well as evacuation routes that remained passable. White also describes the way organizations are leveraging drone technology in their response. Oil and gas companies are using drones to inspect their facilities, while insurance companies have been able to use the tech to capture high-resolution 3D images of damage to help expedite claim response and enable those affected to rebuild and recover more quickly. Finally, White discusses the way different organizations are leveraging IoT sensor arrays to measure and predict natural disasters in advance, helping to provide critical time to those in harm’s way. Where Will Hurricane Jose Go Next? How Drones and Lightbulbs Help Predict Dangerous Weather Unfortunately, Irma and Harvey are being quickly followed by another potentially dangerous storm (at the time of writing, Tropical Storm Jose) looming east of the United States. In this article from Newsweek author Kevin Maney describes the ways technology is helping us predict storms with greater accuracy. In the article, Maney notes the one of the key components for more accurate weather modeling and prediction is vast amounts of data. Indeed, the IoT is the most prolific and advanced data engine in technology history, and scientists are able to leverage the IoT to make incredible breakthroughs in their weather modeling algorithms. Department of Energy Investing in Power Resiliency In this recent blog post from the Department of Energy, it was announced that the DOE is invested some $50 million to help improve the resilience and security of the United State’s energy grid. This is a particularly timely announcement in the wake of Harvey and Irma, whose impacts on area electrical grids were profound. One of the technologies in discussion as part of the investment are micro grids, smaller, more “agile” energy structures that make the impact of localized storms less widespread. In a traditional grid system, one transformer can impact wide swaths of residents, while a micro grid limits damage and makes repairs simpler, less costly, and faster. Final Thoughts While the devastation caused by these two natural disasters cannot be overstated, IIoT played a significant role in saving lives both before the storms made landfall and after the storms had passed. When it comes to these sorts of disasters, even minutes of additional notice can mean the difference between life and death. As IoT solutions grow more robust and continue to become more ubiquitous in cities across the globe, we expect prediction and response capabilities to continue to advance at an incredible pace.
NFL Advances In-Stadium Wireless Connectivity
(Image courtesy of www.sportsauthorityfieldatmilehigh.com) With the NFL season kicking off, we decided to investigate one of the more overlooked aspects of the game: in-stadium wireless communication. Surprisingly, several aspects of the game experience rely heavily on wireless communication: coaches headsets on the field and in the booth, concession stand payment processing, and, of course, fans with smartphones. Anyone who has attempted to connect to publicly available wireless internet in a stadium, concert venue or otherwise generally crowded area knows that connectivity is finicky at best and nonexistent at worst. In the era of instant score updates, fantasy leagues, Twitter and other social media applications, fans expect to be able to use their smartphones during a live-game experience. Additionally, even just a few years ago coaches themselves dealt with connectivity problems: … The tablet computer in his left hand — a high-tech replacement for the black-and-white printed pictures coaches have used for decades to review plays — kept losing its Internet connection, leaving Belichick unable to exchange images he and his coaches rely on to make in-game adjustments. The fault is apparently in a new private Wi-Fi network the NFL installed in stadiums this year to great fanfare. Internet service is erratic, making a system financed by one of the world’s richest sports leagues little better than the one at your local coffee shop. … Of course, since then, the NFL has gone out of its way to better incorporate wireless communication technology into the stadium experience for fans and personnel alike. This year, the Denver Broncos 3,000 5 GHz wireless antennas in Mile High Stadium (we should note, the claim of ‘most of any NFL venue’ is unverified): To increase fan connectivity, Broncos announce install of 3,000 5GHz wireless antennas at stadium, believed to be the most of any NFL venue. pic.twitter.com/ES2CWZhJ0z — Patrick Smyth (@psmyth12) September 5, 2017 For the NFL, and other large events, the question of connectivity has more to do with bandwidth capacity than access to a wireless network. Most cellular carriers provide access to LTE networks in the populated areas where stadiums and event centers are located, but the sheer amount of data being used during an event like the Super Bowl has grown exponentially over the years. In 2014, data usage at Super Bowl XLVIII totaled around 2.5 terabytes. Super Bowl LI, played in February 2017, saw nearly 12 TBs transferred throughout the game over WiFI alone, with Facebook and Snapchat accounting for almost 10 percent of the total bandwidth. Verizon and AT&T customers combined to use another 20 TB of data over those networks. With those numbers in mind, it makes far more sense to utilize high-bandwidth technology like WiFi, rather than relying on the LTE networks to support those big data figures. When IIoT and the NFL Collide The average consumer thinks of WiFi as a broadband service facilitated by a router in one’s home or office. When scaled to the usage size of a football stadium-worth of bandwidth consumption, however, a regular router will not suffice. Instead, these stadiums use wireless communication technology that has been deployed with regularity in the Industrial IoT for years: signal repeaters and access points peppered strategically throughout the necessary coverage areas. Just like companies in the utilities, oil and gas, precision agriculture and smart city industries, these stadiums are relying on industrial-strength WiFi platforms to handle the data demands of teams, vendors and fans. An additional consideration for stadiums and critical industries is the security of these networks, so tech vendors must be able to supply built-in security measures within the access points. These networks must be secure, flexible and reliable in order to support the massive demand being made for hours on end. The New Generation of Stadium Experiences We tend to take internet access for granted these days. Connectivity is already nearly ubiquitous and only growing each year, so it makes sense that stadiums would eventually start to catch on to the technology being used to propagate these industrial-strength networks. At this point, it is not just the NFL that is working on pushing the stadium experience into the next generation, other professional sports leagues, music venues, and festival sites are catching up to the IIoT technology that is proving to be a literal game changer.
Hurricane Relief and Recovery Efforts Enlist UAS Tech
The imagery and reconnaissance coming in from tracking the impact of Hurricane Harvey (and now Hurricanes Irma and Jose) has been jaw dropping. In fact, these reports have helped instigate a lot of the recovery efforts underway. Various technologies are a critical factor for these efforts and numerous systems are being deployed to serve those communities affected – perhaps the most intriguing being that of unmanned aerial systems (UAS). While the implementation of UAS into the National Airspace System (NAS) has been gradual – being met with some resistance and numerous regulatory factors – disaster and recovery efforts needed at the scale of Hurricane Harvey, for example, cause the need for immediate action. To that end, UAS are being deployed daily to aid government and relief officials in the areas of Houston and Southern Texas. According to a recent Wall Street Journal article authored by Andy Pasztor, “In the first six days after the storm hit, the Federal Aviation Administration issued more than 40 separate authorizations for emergency drone activities above flood-ravaged Houston and surrounding areas. They ranged from inspecting roadways to checking railroad tracks to assessing the condition of water plants, oil refineries and power lines. That total climbed above 70 last Friday and topped 100 by Sunday, including some flights prohibited under routine circumstances, according to people familiar with the details. Industry officials said all of the operations—except for a handful flown by media outlets—were conducted in conjunction with, or on behalf of, local, state or federal agencies.” This quick response from the FAA signals a change forthcoming. As reported above and in other reports, new regulations from the FAA may soon be on the horizon to further expedite the NAS implementation. The benefits of implementing UAS technology for disaster recovery efforts, among other use cases, are far reaching. However, and as we discussed in a post earlier this year, are UAS friends or foes to emergency response teams? Clearly, the evidence around UAS deployments for Hurricane Harvey suggests that these next-generation technologies are proving critical to recovery efforts. However, there are many instances where more stringent rules and regulations of UAS in the NAS are required, especially when impeding response teams. According to the FAA’s estimates from 2016, we can expect about 7 million drones to ship to the U.S. by 2020. Which also means, our skies are likely to become much more crowded with not just private consumer devices, but many more commercial systems as well. This is where an early examination of the cost/benefit analysis of drones used in emergency response support may prove to be helpful. By several accounts already reported, numerous police departments, local and regional government agencies, fire departments, Community Emergency Response Teams (CERT) and even lifeguards are already adopting and testing drone technologies in the event of an emergency response situation. By no means do we expect that trend to discontinue. However, it is also important to get a handle of what the negative outcomes could be so that technology companies like FreeWave can help address these issues now through technical guidance, tech innovation and considerations for implementation into the NAS – particularly when it relates to the reliable command and control of these systems. The point here is we should be exercising any and all options we have as a country to help assist with the relief efforts from these natural disasters. Obviously, unmanned systems are a piece to this puzzle for many reasons, but perhaps most importantly because they help keep additional human lives out of harm’s way. We want to wish all those affected by Hurricane Harvey, Irma and Jose all the best – keep safe and be well.
Hackathons Giving Birth to Innovative IoT Solutions
One of the fastest growing spaces in tech is the world of connected devices — often called the Internet of Things. In the embedded engineering and software development worlds, this technological shift is so pervasive some have taken to called it “The Internet of Everything.” While organizations and enterprises are increasingly putting the IoT at the root of many of their forward-thinking business strategies, one of the strongest engines of innovation stems from hackathons. Hackathons are essentially software or hardware challenges, where teams of developers or engineers are giving a task (i.e. build a smart city solution), with specified hardware or software (maybe a certain development board or programming environment), in a specific time period (anywhere from a few hours to a few days). In today’s top IoT news, we’ll take a look at a few stories in the industry about hackathons and how they are helping shape the IoT. Functional Fabric Hackathon Leads to eTextiles Innovation One of the fastest growing areas of the IoT revolves around smart clothing — sometimes called eTextiles. Smart clothing can range from simple solutions like integrating sewable LEDs into clothing to craft safer bicycling attire, to embedded sensors that are used to monitor environmental conditions for oil and gas workers. Recently, as noted in this article from “The University Network,” the Massachusetts Institute of Technology hosts a hackathon focusing on “Functional Fabric.” MIT has long been a hub for IoT innovation and is one of the epicenters of eTextiles. In the Functional Fabric Hackathon, teams of students faced the challenge of design clothing solutions that would aid soldiers, first responders and victims of disasters. The teams had three days to come up with their solutions and were competing for two grand prizes of up to $15,000. 22 teams competed and the winning solution came from an MIT student group called “Remote Triage.” Their solution was a sensor system that could be embedded in a soldier’s uniform, that would monitor not only vital signs, but could then report any injuries to field medics, provide location of the injured soldier, and even triage the severity of the injury with a color coding system. Hackathon Challenges Young Women to Build Smart City Solutions “She Builds Tech — Smart City Hackathon” recently challenged young women in India to build the smart city solutions of the future. As noted in this article from The Hindu, there were ultimately five winners — a solar energy harnessing paint, a water grid solution system, geo-fencing, a smart ambulance service, and a routing and scheduling system for tourists. The event lasted for two days and attracted over 300 girls from various engineering colleges. TechCrunch Disrupt Hackathon Coming in Mid-September TechCrunch Disrupt, the event that has becoming one of the world’s biggest stages for innovative new technologies, is rapidly approaching, with the San Francisco version of the event scheduled to kick off on September 12th. The hackathon will pit teams against each other in a two-day sprint to design the most impressive tech. At the end of the hackathon, teams will have just 60 seconds to impress judges for their shot at a $5000 grand prize, a slew of gifts and gadgets provided by sponsors, and all the glamour that goes along with winning one of the countries most elite hackathon competitions. To learn more about the hackathon, or to grab tickets to watch the action, check out this article from TechCrunch. — Hackathons continue to prove that innovations in the worlds of IoT, embedded engineering, and software solutions do not have to come just from the prototyping labs of Fortune 500 companies, but can emerge from groups of students and tech enthusiasts faced with big challenges and short timeframes.
The Next Generation of IIoT: Micro & Macro Connectivity
From a consumer standpoint, the impact of IoT connectivity is clear. People can purchase smart home systems and automobiles with increasingly autonomous features. Looking at the potential changes to our daily lives in the coming years, all things point to connectivity. We are eyeing a future where we can monitor and control our homes, vehicles and business around the clock. The news stories are exciting and tangible because new products are frequently unveiled and we see them being used in our everyday lives. This impact has spread beyond the scope of the consumer market, which ultimately led to the Industrial Internet of Things (IIoT). Traditional businesses, like those in utilities, oil/gas and agriculture, face a future that has the potential to transform entire industries due to the power of digital disruption. Despite the growing pains and challenges of “going digital,” industrial businesses face almost limitless potential to streamline operations and control large distributed networks with a level of precision that was previously impossible. As these industries pick up on the value of data and connectivity, next generation applications have emerged that will drive competition and increase productivity. Data and analytics will be available via the cloud and accessible from any device. And even better, the quality of data will be controlled through automation and the incorporation of third party applications. What this means for businesses is they will be able to monitor their networks on a micro level. This allows problems to be stopped in their tracks and for precise process adjustments that streamline operations. With third party applications, there is not only substantial business opportunity for developers, but there are endless possibilities for process control, security and operational apps that will drive down costs and support increased production. Most business decision makers are aware that there is no stopping digital transformation because research shows that it’s already happening. Many businesses are in the process of digital transformation and have already thought about these next generation systems and the research proves this: 75 percent of IoT providers say that big data and analytics are among the top skills they look for when adding talent to their teams. 50 percent of companies look to hire specialists in mobile development. A recent TechBullion article states: “they already have noticed the close relationship of mobile and IoT and plan to launch IoT projects for their businesses within the nearest 5 years.” Gartner says that by the end of 2017 demand mobile application development will grow five times faster than the number of IT companies able to meet this demand. A new report from Frost & Sullivan anticipates a trend in the transition from connected devices to the use of cognitive or predictive computing and sentient tools in the next 12-18 months. So what does this mean for industrial business? It means they need to invest now in the communication technologies that will deliver the data that is absolutely critical for future networking needs. It means they need to think about how they can enable programmability at all network endpoints – even at the edge. And lastly, it means they need to start working through the challenges of a digital shift now so they are prepared for an automated, connected future.
Node-RED: The IoT Programming Language No One is Talking About
Sussing out the key pieces of the Internet of Things is usually accompanied by caveats ranging from the established uncertainty of the future, the security problems of the present, and the legacy system integrations of the past. Industry gurus and thought leaders predict growth in the billions – dollars, devices, deployments, Cloud applications, etc. Networking experts waffle on standardization. Hardware providers sprint to keep up. But one of the critical pieces of the Industrial IoT is something you won’t find jumping off front-page headlines – yet: Node-RED, the programming tool for wiring together hardware devices developed by IBM, is the power behind the IoT throne, and no one is really talking about it. Lost amid the noise about ‘smartifying’ the world is the practical reality that unless you can figure out a way to seamlessly connect the hardware devices that comprise a smart network, you are essentially relying on the Cloud to run an overwhelming number of disparate applications – and that is assuming your network is near invincible. Since the Industrial IoT relies, in theory, equally upon Cloud and Edge device processing, developing software applications that can effectively run in both settings is crucial. This is where Node-RED comes in. According to Nodered.org, the open-source Node-RED ” … provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes in the palette that can be deployed to its runtime in a single-click … [making it] easy to wire together flows using the wide range of nodes in the palette.” The essence of this tool is that engineers and operating technicians can create and configure applications easily, in real time, on Edge devices. Ideally, the pieces of code being used to create programs are reusable, meaning that the process can be learned by field operators without the need for a degree in computer science. The code is built on Node.js, the JavaScript runtime that frequently pops up on Raspberry Pi platforms due to its ease of use. So, if it is so easy, and so important, why is no one talking about it? The ongoing problem for the IIoT is the Wild West mentality: the no-holds-barred land grab has resulted in disparate hardware and software products that often require a combination of proprietary and open-sourced solutions. As a result, the actual mechanisms that drive the building of an IIoT network are often less talked about than the tangible pieces that come together to build that network. There are several considerations to keep in mind. First, the idea of IT/OT convergence has only just started to gain traction, so legacy solutions (especially in certain industries) haven’t quite crossed the threshold of multi-function. Second, the changing demographic of the workforces in the industrial sector means that the traditional gatekeepers, often not versed in software or computer programming, have been loathe to adopt solutions that require a whole new skill set. The result is that the idea of programming between devices and Cloud applications is in a relative infancy. Third – and still related to the workforce demographic – creating an entire workforce of people versed in both hardware engineering and computer programming is impractical. Those factors, along with several others related to the need for network functionality and data analytics, means that a solution like Node-RED is still not completely understood, and perhaps even more pertinent, still not widely adopted by industry leaders on both the hardware and software side. But it also means that it is more necessary than ever.
FierceWireless: FreeWave Delivers Rugged IIoT to Mount Washington Observatory

Earlier today, FierceWireless published an article highlighting a recent joint case study from Mount Washington Observatory’s use of FreeWave’s FGR and FGR2 radios to collect vital climate data. Editor Monica Alleven pointed out several key factors that drive the success of the project: FreeWave says it’s known for its ability to maintain connectivity in environments where other technologies have succumbed to the elements. At Mount Washington, FreeWave’s FGR and FGR2 radios connect a network of 28 sensors and devices on five remote weather stations and deliver data in spite of the area’s year-round harsh weather. The weather stations are solar-powered and only receive sunlight 40% of the year, another reason that FreeWave’s low-power solutions are ideal for the network. According to Freewave, these capabilities have enabled 24-hour, year-round network connectivity. To read the full article, visit FierceWireless: http://www.fiercewireless.com/wireless/freewave-delivers-industrial-iot-at-mount-washington-observatory-n-h To read or download the Mount Washington Observatory case study, visit: https://www.freewave.com/mount-washington-observatory/ FreeWave also recently published a joint case study with the British Antarctic Survey, which uses similar ruggedized IIoT technology to aggregate and transmit data reliably in conditions that could arguably be called some of the most extreme on the planet. As with Mount Washington, FreeWave’s FGR and FGR2 radios are the backbone of the network deployment, as they have consistently proven to function in temperatures well below the approved -40 degrees Celsius. To read or download the British Antarctic Survey case study, visit: https://www.freewave.com/case-studies/british-antarctic-survey/
On the Edge of Transformation: IIoT for Water/Wastewater
Innovation is everywhere. Even the most industrial of industries are being disrupted by technology that has the power to transform entire market landscapes. The water/wastewater industry certainly falls into this bucket as we see automation and Industrial IoT (IIoT) driving new processes and uncovering data that enables intelligent decision making. Robust wireless, FHSS-based solutions are available today to ensure consistent and reliable delivery of that important data. As we seek more connectivity as a means to understand the network from the business office to the furthest endpoint, all in real-time, we see the potential impact on operations. As a result, utilities are beginning to adopt new methods of monitoring and control that offer more visibility over operations and connectivity at every network endpoint. As a new generation of tech savvy workers rises, further driving innovation and technology as a means for success, we see automation take over many monitoring and control processes – especially in remote networks. The potential benefits water/wastewater impact the utility and the customer, from more efficient operations to safer water. Things like predictive analytics are now available to serve as a problem solving tool for common monitoring issues, such as predicting the likelihood of pump failure. The ability to add programmable radios at the network’s edge opens up new possibilities for streamlined data, enhanced cybersecurity and precise control. The potential cost savings alone are catching the attention of decision makers in the utility business. Here are a few examples of how IIoT is driving major innovation in the water/wastewater industry, and how wireless solutions can help utilities create a network that enables new technology: Treatment Plant Automation – Automation at water treatment plants optimizes operations. With automated monitoring and control, water utilities can further ensure that the water offered to customers is safe for consumption and can help identify issues in real tie. High-speed wireless solutions can help drive real-time automation to ensure uptime, flexibility, safety and long equipment life. Remote Tank Level Automation– Tank level monitoring and control, a critical operation, for water/wastewater is even more challenging when the tanks are remotely located. With automation solutions in place, this can be done in real time. New wireless technologies for remote tank level automation can take this a step further by enabling programmability by hosting third party applications specific to the needs of the individual tank monitoring network. Chemical Injection Water/Wastewater – With the ability to deliver data directly to the cloud, chemical processes can be closely monitored to ensure the utmost in safety and performance. The access to data in real-time is essential in monitoring the chemical process and it ultimately leads to fewer mistakes the chemical injection process. Wireless solutions can enable seamless delivery of this critically important data to the cloud. IIoT is changing the way water/wastewater organizations approach many of their processes, and so far we are seeing streamlined operations and endless potential industry transformation. As the water industry evolves, it will be interesting to see what changes take shape.
IIoT Top News: Oil and Gas Early Adopters
The Industrial Internet of Things (IIoT) is not just a means for organizations to harvest and analyze vast amounts of data to drive better business decisions. It is driving innovative ways for companies to keep their employees safe and out of harm’s way. In the latest IIoT Top News, we’ll take a look at some trending stories from the oil and gas industry, a quickly growing user of the Industrial Internet of Things to help power data-driven decisions, business operation optimization, and employee safety. The possibility of an industrial wireless oilfield is now not just a pipe dream, but a reality. Wearable Technology and the IoT Improving Safety for Oil and Gas Workers For many folks, wearable technology is viewed as a simple fad of smart watches and health tracking hardware. In the grand scheme of things, we’re just beginning to scratch the surface of wearable tech, with biotechnology, embedded smart tracking hardware, and much more right on the horizon. As noted in this article from the EconoTimes, one of the industries beginning to leverage the power of wearable technology is oil and gas. Looking back at 2014, occupational fatalities nationally were 3 per 100,000 workers. In oil and gas, that number skyrockets to 15. That’s why some organizations in this hazardous industry are turning towards the IIoT and wearable tech to keep their employees safe. From fall risk mitigation, to toxin and fume inhalation prevention and diagnosis, the applications for wearable technology for oil and gas employees in the field are many. One of the current limitations for wearable tech in the field is the ruggedness of the technology, but as new devices are designed that can withstand harsh environments, you can expect to see more adoption of this potentially life-saving tech. The IIoT and Operationalizing Excellence For the oil and gas industry, the advent of the Industrial Internet of Things (sometimes referred to as Industry 4.0) holds massive promise. From reacting to changing global trade conditions in real-time, to instantaneous equipment feedback, there are myriad uses for connected tech. This recent article from IoT Business News cautions us to heed the warnings of the dot.com era and take a strategic approach. The article argues that expecting the IIoT to be a silver bullet for business decisions will only lead to more confusion. It notes that Industry 4.0 is an incredibly powerful tool, one with the ability to fundamentally change the way oil and gas organizations do business, but it is important to go “back to the basics” and understand business needs and objectives before trying to dive into the data. In the Oil Industry, IoT is Booming Oil and gas is not always known for its agility, but when it comes to the Internet of Things, the industry is moving at a decidedly rapid pace. This article from Offshore Engineer asserts that the IoT is not only increasingly becoming part of many organization’s strategies, but is fundamentally becoming embedded in the “oil psyche.” Dave Mackinnon, head of Technology Innovation at Total E&P UK, provides quite a bit of color around this assertion, and he believes that oil and gas is moving towards a “digital supply chain” that was fundamentally revolutionize the sector. Mackinnon also believes that when it comes to the IoT train, it’s either get on, or get left behind. “In an IoT world, many companies will discover that being just a manufacturing company or just an Internet company will no longer be sufficient; they will need to become both – or become subsumed in an ecosystem in which they play a smaller role,” Mackinnon said. Cyberattack Concerns Loom for Oil and Gas While the highest profile cyberattacks have been in the commerce and financial sectors, industrial targets remain at high risk. A recent article from Hydrocarbon Engineering notes that “because of its complex layers of supply chains, processes and industrial controls, makes [the oil and gas industry] a high value target for hackers.” As oil and gas organizations look to leverage the Internet of Things to bring increased value to their companies, it will become more and more important to build extra layers of security into their systems. Enabling the Connected Worker While the IIoT is indeed changing the way oil and gas companies make decisions, it is also changing the way employees perform their jobs. This article from Gas Today notes some of the ways the IoT is changing the roles of workers in the field. From AI planning and scheduling, to predictive maintenance on equipment, the connected worker faces a vastly different workplace landscape than even a few years in the past. Ultimately, oil and gas companies will look to leverage the IoT to help their employees make better decisions, as well as to stay safer and work more efficiently. Final Thoughts The Industrial Internet of Things is growing with rapid adoption across many verticals, but oil and gas is already reaping outstanding benefits from this next phase of industry. Lowering costs, optimizing oil production, and increasing worker safety are just a few of the ways oil and gas is leveraging this technological revolution.
Rugged Wireless Radios for International OEM Applications
For original equipment manufacturer (OEM) and military applications around the world, operational success requires reliable data delivery. This 100 percent achievable with rugged wireless radio solutions. As Industrial IoT pushes for more connectivity, coupled with the surge in commercial use of unmanned aerial systems (UAS), the pressure for around the clock command and control (C2) links is higher than ever – and it’s happening on a global scale. To support these growing needs, FreeWave has announced the general availability of the MM2-5 Watt 1.3 GHz (13X5W) integrated radio. Offered in a small package for ease of integration, the MM2-13X5W features an external 5 Watt output, making it ideal for UAS, OEM and military applications where reliability is paramount and space is at a premium. These solutions can be leveraged to deliver important data in the U.S. and abroad for a wide variety of mission critical applications. The MM2-13X5W has a lot to offer starting with it’s built in versatility and the ability to function as a gateway, endpoint, repeater or endpoint/repeater. Security is a priority – each MM2 13X5W is equipped with proprietary frequency hopping spread spectrum (FHSS) technology. It also features a line-of-sight range of up to 90 miles, and can be deployed in international settings where lifesaving communications and security are paramount. A number of these use cases include UAS applications, soldier training, environmental monitoring and other government and defense needs. Next Generation UAS Applications As the commercial drone market rapidly expands, the number of use cases is filtering into new markets. Beyond the military scope, commercial UAS applications have the potential to completely transform the monitoring, control and data analysis processes for many industries. The MM2-13X5W is equipped to support this next wave of these UAS applications, including: Pipeline monitoring as a service – drones can help maintain safe and consistent visibility of the pipeline and deliver that critical data to the network. The small form factor and proven reliability means uninterrupted data transmission in remote settings. Homeland security apps – recently, in the U.S., there have been many heated conversations around border protection. Many drone supporters believe that UAS can offer a cost effective way to monitor the nations borders. The U.S. border patrol even recently solicited contractors to build facial recognition drones. Drone delivery service – As we look at the future use of commercial UAS, drone delivery is a popular topic of conversation. We’re also seeing use cases where drones can deliver food and medicals supplies to high risk areas in third world countries. Precision Agriculture: Drones can enhance crop visibility, enabling smarter decisions and more food output. The potential impact of drones in precision agriculture is becoming recognized throughout the world. As the possibilities for commercial UAS continue to multiply, so does the need for secure C2 links for successful operations – and this is where the MM2-13X5W is an ideal solution. Additional Product Features The MM2-13x5W also features the following: 115.2 and 153.6 kbps selectable RF data rates TDMA, Super Epoch TDMA, and AES Encryption Performance tests from -40 degrees Celsius to +85 degrees Celsius Data link range up to 90 miles For more information about the MM2-13X5W, please visit: https://www.freewave.com/mm2-m13-series/