Is Sensor-2-Server Technology the Next Big Wave for Oceanic Monitoring?

The National Geographic Society defines oceanography as, “an interdisciplinary science integrating the fields of geology, biology, chemistry, physics, and engineering to explore the ocean.”  A brief history of oceanography, laid out by the National Geographic  Society, begins with the first oceanographic studies completed by the H.M.S. Challenger Expedition from 1872-1876, which was the first voyage that collected data related to the oceanic environment. The more advanced forms of oceanography did not begin until World War II when the U.S. Navy studied the oceans to gain communication advantages across the Atlantic for submarine warfare. In the 1950s and 1960s, submersibles were introduced and ultimately became the technology that revolutionized oceanographic exploration. Modern technology has enabled more in depth exploration of the ocean. It offers tools to observe the environment, study the living beings living within it, and explore the unexplored. With the increasing adoption of the Internet of Things (IoT), it is safe to say that more innovation will continue to drive oceanic research and exploration as we are able to connect more sensors and devices to the equipment that helps us learn more about the vast and expansive oceans. IoT technology allows researchers to take a scientific approach to the examination of the ocean through recorded and analyzed data. Some of the technologies already in use today include, vessels and submersibles, observing systems and sensors, communication technologies, and diving technology. Sensor-2-Server Technology for Oceanic Monitoring As IoT adoption rapidly expands, and in many ways changes the way things work – researchers continue to find new and innovative ways to explore the ocean. Some technology manufacturers are offering Sensor-2-Server solutions (S2S) for monitoring and data collection. S2S is defined as intelligent communication that begins at the sensor level and targets servers for specific reasons. The concept of S2S is about creating intelligent transmission from a specific location back to the appropriate server with the appropriate intelligence to drive action for change. For oceanographic purposes, this type of technology unlocks the opportunity to incorporate more data points than ever before. Some Sensor-2-Server solutions offer platforms to host third-party applications in addition to creating the communication links for devices. This new class of wireless IoT communication solutions is starting to be adapted for oceanographic research today. Below are some real-life applications that leverage modern Sensor-2-Server technology: Communication with an ROV on the ocean over a distance of about two miles Vessel telemetry for units that operate in a variety of changing environments from quayside to middle of ocean Remote access to GPS stations in Alaska over approximately 13 miles to optimize the quality of data transfer for ocean mapping. Connecting remote coastal radar systems measuring ocean surface currents around Coral reefs during an upcoming experiment along the very remote NW Australian Coast. S2S technology will continue to lead to new and exciting ways for researchers to uncover some of the ocean’s mysteries, understand how it works, and learn the behavior of its creatures.

Robotics & IoT Merging Together

The Internet of Things (IoT) has made its appearance in a substantial number of industries, most recently manifesting itself in the the realm of robotics. IoT technologies and standards open the door for new robotic capabilities that are powered by cloud computing, communication with other robotic systems and sensor input from the environment around them.  Recent research has pointed to a new opportunity for robotics to operate beyond the scope of what was possible just a few years ago. As we look at a future of data and connectivity at every end point – from our cars, to our homes, to our businesses – it’s clear that we’ve just begun to scrape the surface of what is possible with the rapid expansion of IoT throughout the world. In a recent report, ABI research coined the, “Internet of Robotic Things (IoRT),” defining the concept, “where intelligent devices can monitor events, fuse sensor data from a variety of sources, use local and distributed ‘intelligence’ to determine a best course of action, and then act to control or manipulate objects in the physical world, and in some cases while physically moving through that world.”  The research certainly backs recent claims that robotics are going to leave a significant mark on the IoT industry. Take a look at the key statistics that Forbes recently reported on Robotics: 4% of developers are building robotics apps today. 45% of developers say that Internet of Things (IoT) development is critical to their overall digital strategy. 4% of all developers are building apps in the cloud today. RF Technology in the IoRT World As the entire technology landscape changes it is more important than ever for RF technology to adapt in order to meet new industry demands. Manufacturers in the hardened, wireless communication industry have taken note and set their eyes on all things IoT by developing Sensor-to-Server (S2S) communication solutions. Some of these wireless IoT communication solutions providers are offering platforms to host third-party applications in addition to creating the communication links for devices. This is an entirely new class of wireless IoT communication solutions that has the staying power needed in the midst of technology evolution. Robotic IoT Future Some companies using wireless S2S solutions, have already begun to incorporate IoRT into their networks. Real-life use case examples of robotics for IoT networks that are in the works today include: Semi-autonomous robotic geophysical surveying platforms for detection of unexploded ordnance. With an S2S communication solution, this use case will provide real time kinematic base station GPS corrections and combined geophysical data to a mobile command and control vehicle for concurrent advanced data processing by rear support group linked by MiFi or Satellite communications. A ‘ship-to-shore’ link for an ocean going wave-powered autonomous robot. As robotics systems adapt to the new technology landscape, they will increasingly integrate with IoT networks. With these new advanced robotics capabilities, businesses will see new opportunities for automation and efficiency to further advance operations and will be able to leverage this new technology for competitive advantage.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.