IIoT News Roundup: How IoT is Saving Lives

In the past several weeks, there have been two massive natural disasters in the U.S., as Hurricane Harvey made landfall in Texas, bringing historic flooding to Houston and surrounding areas, and Hurricane Irma devastated parts of the Caribbean and Florida. Sadly, thousands of people find themselves without power, food and shelter. It is indeed a terrible tragedy and our hearts go out to those affected. In this devastation, however, there is a story emerging about the role the Internet of Things (IoT) has played in disaster preparedness. Indeed this technology has matured to the point that it is making a real and measurable impact in helping communities prepare for, respond to, and recover from disaster. In today’s IIoT news roundup, we will take a look at several stories emerging around disaster preparedness, smart cities and the IoT. Disaster Response in the 21st Century: Big Data and IoT Saves Lives In this story from Forbes, author Chris Wilder describes some of the ways the IoT and other technologies have changed the way disasters are predicted and responded to. Specifically, Wilder cites the ways crowd sourced emergency applications have made post-disaster communication and emergency dispatch easier and more streamlined. Further, Wilder speaks to the ways Big Data generated from sensors and meters throughout the region helped give more advanced notice to impacted areas and helped predict the path of these hurricanes with greater accuracy. IoT’s Role in Natural Disasters like Harvey                   In this article from IoT for All, author Hannah White discusses how the advent of the IoT has fundamentally changed the way hurricanes are predicted and responded to. Specifically, White discusses how open data was used to list Red Cross shelters with space availability, as well as evacuation routes that remained passable. White also describes the way organizations are leveraging drone technology in their response. Oil and gas companies are using drones to inspect their facilities, while insurance companies have been able to use the tech to capture high-resolution 3D images of damage to help expedite claim response and enable those affected to rebuild and recover more quickly. Finally, White discusses the way different organizations are leveraging IoT sensor arrays to measure and predict natural disasters in advance, helping to provide critical time to those in harm’s way. Where Will Hurricane Jose Go Next? How Drones and Lightbulbs Help Predict Dangerous Weather Unfortunately, Irma and Harvey are being quickly followed by another potentially dangerous storm (at the time of writing, Tropical Storm Jose) looming east of the United States. In this article from Newsweek author Kevin Maney describes the ways technology is helping us predict storms with greater accuracy. In the article, Maney notes the one of the key components for more accurate weather modeling and prediction is vast amounts of data. Indeed, the IoT is the most prolific and advanced data engine in technology history, and scientists are able to leverage the IoT to make incredible breakthroughs in their weather modeling algorithms. Department of Energy Investing in Power Resiliency In this recent blog post from the Department of Energy, it was announced that the DOE is invested some $50 million to help improve the resilience and security of the United State’s energy grid. This is a particularly timely announcement in the wake of Harvey and Irma, whose impacts on area electrical grids were profound. One of the technologies in discussion as part of the investment are micro grids, smaller, more “agile” energy structures that make the impact of localized storms less widespread. In a traditional grid system, one transformer can impact wide swaths of residents, while a micro grid limits damage and makes repairs simpler, less costly, and faster. Final Thoughts While the devastation caused by these two natural disasters cannot be overstated, IIoT played a significant role in saving lives both before the storms made landfall and after the storms had passed. When it comes to these sorts of disasters, even minutes of additional notice can mean the difference between life and death. As IoT solutions grow more robust and continue to become more ubiquitous in cities across the globe, we expect prediction and response capabilities to continue to advance at an incredible pace.

What’s Your Emergency Communications Plan?

As our cities become increasingly connected and transform into Smart Cities, there is an opportunity to streamline emergency communications. Cities and municipalities can leverage a variety of advanced technologies and incorporate them into their own emergency communication plans. Emergency management decision makers tasked with improving city-wide emergency and disaster plans now have access to technology that can assure connectivity in the harshest weather or environmental conditions; increase visibility into dangerous environments; and, optimize response times. Wireless Short-haul for the Win Wireless short-haul solutions can create an industrial-strength Wi-Fi connection that was built to withstand earth’s most challenging conditions. These Sensor-2-Server (S2S) types of technologies are used for a variety of municipal and government use cases, but they are particularly suited for outdoor communication needs. While they are often used for day-to-day use, such as traffic management, they are a viable option for providing secure, reliable connectivity as part of any city or local government’s emergency communication plan. VVDS for Emergencies With an industrially hardened, high-speed wireless short-haul solution in place, cities can experience the benefits of Voice, Video, Data and Sensor (VVDS) information, even when cell towers are overloaded. In a world where we increasingly rely on connectivity, it is essential to keep government and municipalities online during the worst-case scenario. Industrial-grade Wi-Fi that is tested and proven in the most extreme weather conditions is designed with that in mind – keeping local government officials and first responders online. As a result, rescue efforts stay motion. With a VVDS-enabled technology in place, first responders achieve additional visibility into conditions. This real-time view allows for fast action that minimizes collateral damage. It also protects first responders, giving them an advantage in dangerous situations and offering a real-time view of environment they are heading into. Secure, Reliable Solutions Industrial wireless short-haul networks also offer the benefits of being highly secure. There are solutions with encryption capabilities that prevent data hijacking. As more cities become Smart Cities, decision makers will need to make Smarter emergency communication plans that align with the new technology landscape. There are S2S solutions on the market today that are designed for unrelenting performance in the outdoors. These solutions enable better response times, secure data transmission, increased visibility and higher-level risk assessment. When emergencies strike, every moment counts. Having a reliable connection can make the difference in saving lives. Is your city leveraging wireless short-haul solutions for emergency preparedness?

Drones and Emergency Response Teams – Friend or Foe?

The drone business has been flying high for the last few years, especially as they became popular consumer devices as regulatory and technological frameworks continue to take shape for greater implementation into the National Airspace (NAS).  Much has also been written though about the possibilities of drones igniting the next wave of innovation for enterprise specific applications in precision agriculture, oil and gas, construction, asset monitoring and delivery, and mining. However, it’s clear that the military sector will continue to lead all other sectors in drone spending for the foreseeable future, thanks to worldwide demand of this technology. But perhaps the most intriguing applications for drones in the coming years are those related to safety – public safety, that is. State and local governments are certainly beginning to take their SWOT (Strengths, Weaknesses, Opportunities, Threats) analyses of implementing drone technologies for their own emergency response efforts. Why just two weeks ago, local officials around Japan were looking at drones to help “beef up” their disaster response programs, in the event of a major disaster such as an earthquake. Even last week the North Carolina Department of Transportation’s Division of Aviation collaborated with close to 50 state and local government agencies and researchers for a workshop about the use of drones in crisis situations. North Carolina is also looking at applications for drones for monitoring rockslides along Interstate 40 at the Tennessee border (a common headache for DOT officials). However, one of the critical discussion points during the workshop was looking at ways to ensure private owners of drones (with or without the best of intentions) don’t interfere with or further complicate emergency response efforts. Are Drones Friend or Foe? According to the FAA’s newest estimates, we can expect about 7 million drones to ship to the U.S. by 2020. Which also means, our skies are likely to become much more crowded with not just private consumer devices, but possibly many more commercial devices as well. This is where an early examination of the cost/benefit analysis of drones used in emergency response support may prove to be helpful. By several accounts already reported, numerous police departments, local and regional government agencies, fire departments, Community Emergency Response Teams (CERT) and even lifeguards are already adopting and testing drone technologies in the event of an emergency response situation. By no means do we expect that trend to discontinue. However, it is also important to get a handle of what the negative outcomes could be so that technology companies like FreeWave can help address these issues now through technical guidance, tech innovation and considerations for implementation into the NAS. Based on what we’ve gathered so far, by far the biggest concerns for drones being used in emergency response is when it interferes with corresponding aviation efforts. There are numerous accounts of private drone pilots causing challenges for search and rescue and firefighting efforts. Just yesterday the Texas A&M Forest Service was reported to have asked its local residents to not fly drones near the wildfires they are trying to battle near college station. Drones were said to have caused a serious safety hazard for firefighters and halted the assistance of other firefighting aircraft. Another instance was in Sharp Park in Pacifica near San Francisco when search and rescue crews were delayed in their rescue mission when a drone flew much too close to the helicopter that was trying to save someone who had fallen off of a cliff. The point here is that while many of the newly born issues from drone flights are based on human oversight or error. It shines a light on just how new this new technology really is (for consumers and enterprises) and how much there still is to learn. We expect to see much more regulation get handed down in the coming years (on a local, state and federal level) to help curb errant drone usage in our increasingly crowded airspace. Furthermore, sense and avoid tactics between disparate aircraft will become even more paramount with each new drone flight. If you would like to learn more or want to add your own take to the drone discussion, please comment below!

Emergency Response From Sensor-2-Server

Emergency response agencies are adding Sensor-2-Server (S2S) communication technologies to their tool belt, thus changing the way our local municipalities operate. As we head in the direction of a more connected world through the Internet of Things (IoT), we see increased efficiencies within our cities and local government operations. For example, municipalities can leverage S2S technology for monitoring and control of their traffic management systems to improve flow of traffic to support community growth or pain points within the local traffic infrastructure. These Smart City types of applications also extend into emergency response. Large scale emergency situations and natural disasters often lead to disabled or overloaded cell towers and disconnected Wi-Fi. When all forms of communication are severed, first responders face the challenge of conducting rescue efforts with extremely limited visibility into identifying which locations require immediate help and conditions of the affected locations. If local government or municipalities leverage Smart City applications to stay online during emergency and disaster recovery situations, response times increase, risk decreases and lives can be saved. A Sensor-2-Server (S2S) solution robust enough to maintain communications during worst case scenarios will provide a mission critical communication link that keeps responders connected. Further, solutions that support voice, video, data and sensor (VVDS) information can aid in complete, accurate assessment during the emergency as well as detailed follow-up after emergencies and disasters are over. Finding a New Solution for Emergency Response Secure wireless communications are a key component to successful emergency response and disaster recovery for Smart Cities. With technology specifically built for harsh outdoor, industrial locations and proven to perform under the most extreme environmental conditions, local governments and municipalities can create emergency response and disaster recovery protocols that would significantly reduce collateral damage. Wireless shorthaul communications solutions with robust Wi-Fi links support VVDS, giving responders a substantial advantage during emergency situations. In a situation where every moment counts, having that connection could make the difference in saving someone’s life. Benefits of Leveraging S2S Solutions with Emergency Response Agencies Functioning even when power outages are plaguing a city, there are a number of ways a Sensor-2-Server type of network can be leveraged by the local government: ⇒ Reduce Risks Significantly reduce the risk of injury for firefighters and first responders. By leveraging video, responders can examine and assess damage after a weather-related incident without having to enter unsafe buildings or areas. ⇒ Assess the Situation Streamline the post disaster assessment by first responders from all directions and relay critical information to headquarters. By leveraging voice and video capabilities responders get an accurate assessment of a situation from every angle and create a faster, safer evaluation than a manual process. ⇒ Increase Response Time When communication networks are down, emergency crews can leverage the secure wireless edge network. Emergency crews can respond faster because messages and instructions are relayed via VVDS rather than manually. ⇒ Protected Data Keep unwanted parties out of the network. Leverage secure encryption capabilities to prevent data hijacking and increase network security. Some solutions will offer a secure, dedicated channel for emergency communications that does not interfere with tactical plans. When a municipality becomes a Smart City, first responders can be highly effective and are better able to protect themselves from the dangerous situations they face. As S2S communications shape the future of municipal communication networks, voice and video can be incorporated into the network. With this new, rich data, emergency management teams can enhance their emergency response protocol and improve emergency planning.

Lifeguards Use Drones?

By Patrick Lazar, VP of Engineering at FreeWave Technologies Drones have actually been around for quite some time, even though the recent “lift-off” of commercial applications has vaulted the technology further into the spotlight. I’ve started seeing some incredible uses of the technology and how not only businesses will benefit, but people as well. For example, lifeguards and emergency responders have started flying drones as another means to quickly assist swimmers in trouble. By dropping a life jacket as soon as possible, distressed swimmers can get assistance quickly while further assistance is in pursuit of reaching the swimmer in the water. In the same vein, another reason lifeguards are flying drones is to identify and monitor other threats to beachgoers such as sharks. This will lead into drones enabling automatic warning systems when sharks get closer to the swim zones, and warn lifeguards to deploy means to both repel sharks and notify others in the surrounding area. My Take: Dropping life preservers are the most natural use case that comes into mind. However, once the use cases start being thought through with detection, prevention and lifesaving goals, a more intelligent system will be needed to sense events, deploy drones to assist, audible two way communication to help victims all the way through to safety, alert authorities to bring needed medical help to the closest recovery location and of course, warning other population nearby to prevent others falling victim to the same conditions. In all these cases, visual, audio, sensor info, command and control information must be sent back and forth to the drone, which will require reliable, long range communications. Furthermore, the payloads of these communication devices must be light/small enough to not affect the drones performance.

Video: What are the Future Uses of Drones?

While drones are responsible for one of the latest tech crazes to hit the mainstream, it’s safe to say that you should not expect them to invade your airspace anytime soon. However, the influx of these flying smart machines may not be as far off as you might think. With heavy-hitters like Amazon, Google and Walmart recognizing the immense opportunity of using drones for shipping and logistics purposes, its no wonder that people are saying “the drones are coming!” Industrial Applications for Drones What could prove to be more promising than the consumer-driven demand for flying drones is the use of that technology in industrial settings and applications. Already, we see companies using drones for the following scenarios: Emergency Response Enables immediate action, providing emergency response teams with fast, flexible visibility to assess critical situations. Utilities Safely allows for the quick inspection of high voltage power lines and wind turbines, helping mitigate worker risk and improve monitoring. Military & Defense Assisting with intelligent surveillance and reconnaissance missions to deliver timely, relevant, and assured information to thwart potential threats. Oil & Gas Protects and helps maintain extensive miles of pipeline covering large, remote areas that would otherwise require enormous amounts of time and resources. Agriculture Creates more efficient farms by monitoring inventory, growth, water and fertilizer levels, and crop health to facilitate production and increase yields. Public Safety Supporting firefighting operations by providing more up-to-date information at a lower cost, while reducing the number of responders in harm’s way. So what does the future hold for these next-generation technologies? It’s hard to say really. One of the biggest hurdles still to jump is figuring out how these aircrafts will fit into the Federal Aviation Administration’s (FAA) existing airspace regulations. There is no doubt there will be new policies that are drone-specific on the horizon. In fact, the FAA has already taken steps in that direction by requiring drone owners to register their aircrafts as a first step in ensuring the safety of everyone who uses the skies. Let’s just assume that over then next five years policy and technology come together and we finally have lift-off in the drone world. What’s next? Check out this video courtesy of Be Amazed that explores 10 amazing futuristic uses of drones:

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.