Top Tips for the New Drone Owner
Recent headlines demonstrate how drones can support public safety and government operations. The Los Angeles Fire Department, for example, used drones for the first time in the Skirball fire that wreaked havoc on Southern California earlier this month. The drones offered real-time situational awareness – allowing responders to see what was happening and change their tactics to avoid hazards. Across the world in Dubai, police are using drones to monitor traffic. Drones truly have made a worldwide impact – and these are just a couple of examples. In addition to providing a critical safety role, the commercial drone market is growing. In the midst of the holiday season, drones make for fun gifts for the aerial hobbyist. While drones are sure to provide hours of entertainment, new drone owners should be aware that there are some basic guidelines, offered by the FAA, that will ensure safe operation. As you peruse the lists of the best drones to buy, make sure to look into the safety guidelines as well. Here are some of the basic rules and regulations that the new drone owner must follow: You Must Register Your Drone The drone registration requirements have been revived. If your drone weighs between .55 pounds and 55 pounds, it must be registered. According to a recent article in Time magazine: “A relative footnote in the National Defense Authorization Act, which was signed into law today, the new regulation requires that drone owners register their unmanned aerial vehicles before taking to the skies. You can register your new drone on the FAA’s drone Unmanned Aircraft System website.” Know Before You Fly Here are a few safety tips (and requirements!) to review before you fly your new drone – straight from the FAA’s website: Fly your drone at or below 400 feet Keep your drone within your line of sight Respect privacy Never fly near other aircraft, especially near airports Never fly over groups of people, public events, or stadiums full of people Never fly near emergencies such as fires or hurricane recovery efforts Never fly under the influence of drugs or alcohol No Drone Zones Did you know that the FAA has a list of locations where drones are forbidden? The FAA recently announced an expanded list of restricted locations, mostly laboratories, where drones cannot fly within 400 feet. When you go out for a day of fun, make sure you’re not close to any of these locations: Hanford Site, Franklin County, WA Pantex Site, Panhandle, TX Los Alamos National Laboratory, Los Alamos, NM Idaho National Laboratory, Idaho Falls, ID Savannah River National Laboratory, Aiken, SC Y-12 National Security Site, Oak Ridge, TN Oak Ridge National Laboratory, Oak Ridge, TN Still unclear on drone requirements? The FAA offers excellent resources: https://www.faa.gov/uas/. If you’re lucky enough to get a new drone this holiday season – enjoy and be safe!
Hurricane Relief and Recovery Efforts Enlist UAS Tech
The imagery and reconnaissance coming in from tracking the impact of Hurricane Harvey (and now Hurricanes Irma and Jose) has been jaw dropping. In fact, these reports have helped instigate a lot of the recovery efforts underway. Various technologies are a critical factor for these efforts and numerous systems are being deployed to serve those communities affected – perhaps the most intriguing being that of unmanned aerial systems (UAS). While the implementation of UAS into the National Airspace System (NAS) has been gradual – being met with some resistance and numerous regulatory factors – disaster and recovery efforts needed at the scale of Hurricane Harvey, for example, cause the need for immediate action. To that end, UAS are being deployed daily to aid government and relief officials in the areas of Houston and Southern Texas. According to a recent Wall Street Journal article authored by Andy Pasztor, “In the first six days after the storm hit, the Federal Aviation Administration issued more than 40 separate authorizations for emergency drone activities above flood-ravaged Houston and surrounding areas. They ranged from inspecting roadways to checking railroad tracks to assessing the condition of water plants, oil refineries and power lines. That total climbed above 70 last Friday and topped 100 by Sunday, including some flights prohibited under routine circumstances, according to people familiar with the details. Industry officials said all of the operations—except for a handful flown by media outlets—were conducted in conjunction with, or on behalf of, local, state or federal agencies.” This quick response from the FAA signals a change forthcoming. As reported above and in other reports, new regulations from the FAA may soon be on the horizon to further expedite the NAS implementation. The benefits of implementing UAS technology for disaster recovery efforts, among other use cases, are far reaching. However, and as we discussed in a post earlier this year, are UAS friends or foes to emergency response teams? Clearly, the evidence around UAS deployments for Hurricane Harvey suggests that these next-generation technologies are proving critical to recovery efforts. However, there are many instances where more stringent rules and regulations of UAS in the NAS are required, especially when impeding response teams. According to the FAA’s estimates from 2016, we can expect about 7 million drones to ship to the U.S. by 2020. Which also means, our skies are likely to become much more crowded with not just private consumer devices, but many more commercial systems as well. This is where an early examination of the cost/benefit analysis of drones used in emergency response support may prove to be helpful. By several accounts already reported, numerous police departments, local and regional government agencies, fire departments, Community Emergency Response Teams (CERT) and even lifeguards are already adopting and testing drone technologies in the event of an emergency response situation. By no means do we expect that trend to discontinue. However, it is also important to get a handle of what the negative outcomes could be so that technology companies like FreeWave can help address these issues now through technical guidance, tech innovation and considerations for implementation into the NAS – particularly when it relates to the reliable command and control of these systems. The point here is we should be exercising any and all options we have as a country to help assist with the relief efforts from these natural disasters. Obviously, unmanned systems are a piece to this puzzle for many reasons, but perhaps most importantly because they help keep additional human lives out of harm’s way. We want to wish all those affected by Hurricane Harvey, Irma and Jose all the best – keep safe and be well.
Rugged Wireless Radios for International OEM Applications
For original equipment manufacturer (OEM) and military applications around the world, operational success requires reliable data delivery. This 100 percent achievable with rugged wireless radio solutions. As Industrial IoT pushes for more connectivity, coupled with the surge in commercial use of unmanned aerial systems (UAS), the pressure for around the clock command and control (C2) links is higher than ever – and it’s happening on a global scale. To support these growing needs, FreeWave has announced the general availability of the MM2-5 Watt 1.3 GHz (13X5W) integrated radio. Offered in a small package for ease of integration, the MM2-13X5W features an external 5 Watt output, making it ideal for UAS, OEM and military applications where reliability is paramount and space is at a premium. These solutions can be leveraged to deliver important data in the U.S. and abroad for a wide variety of mission critical applications. The MM2-13X5W has a lot to offer starting with it’s built in versatility and the ability to function as a gateway, endpoint, repeater or endpoint/repeater. Security is a priority – each MM2 13X5W is equipped with proprietary frequency hopping spread spectrum (FHSS) technology. It also features a line-of-sight range of up to 90 miles, and can be deployed in international settings where lifesaving communications and security are paramount. A number of these use cases include UAS applications, soldier training, environmental monitoring and other government and defense needs. Next Generation UAS Applications As the commercial drone market rapidly expands, the number of use cases is filtering into new markets. Beyond the military scope, commercial UAS applications have the potential to completely transform the monitoring, control and data analysis processes for many industries. The MM2-13X5W is equipped to support this next wave of these UAS applications, including: Pipeline monitoring as a service – drones can help maintain safe and consistent visibility of the pipeline and deliver that critical data to the network. The small form factor and proven reliability means uninterrupted data transmission in remote settings. Homeland security apps – recently, in the U.S., there have been many heated conversations around border protection. Many drone supporters believe that UAS can offer a cost effective way to monitor the nations borders. The U.S. border patrol even recently solicited contractors to build facial recognition drones. Drone delivery service – As we look at the future use of commercial UAS, drone delivery is a popular topic of conversation. We’re also seeing use cases where drones can deliver food and medicals supplies to high risk areas in third world countries. Precision Agriculture: Drones can enhance crop visibility, enabling smarter decisions and more food output. The potential impact of drones in precision agriculture is becoming recognized throughout the world. As the possibilities for commercial UAS continue to multiply, so does the need for secure C2 links for successful operations – and this is where the MM2-13X5W is an ideal solution. Additional Product Features The MM2-13x5W also features the following: 115.2 and 153.6 kbps selectable RF data rates TDMA, Super Epoch TDMA, and AES Encryption Performance tests from -40 degrees Celsius to +85 degrees Celsius Data link range up to 90 miles For more information about the MM2-13X5W, please visit: https://www.freewave.com/mm2-m13-series/
Happy Independence Day!
As we prepare for fireworks, barbeques and all of the excitement that comes along with tomorrow’s holiday, we’d also like to recognize what Independence Day means to the U.S. By definition it’s the celebration of the Declaration of Independence and the birth of our incredible country as an independent nation. On this holiday, we’re also reminded that millions of people have sacrificed (and continue to sacrifice) in order for us to gain and retain our freedoms and liberties. As a company that has had the honor of working in the military and defense industry for more than two decades, we are humbled and grateful to all of the men and women in the armed forces. From the bottom of our hearts, with respect and admiration, we’d like to thank all of brave men and women who have served and sacrificed for this great country — including those who are currently serving today. FreeWave and the Military The government and defense industries have been woven into FreeWave’s story from early on. As previously noted, we have worked in the defense markets for more than two decades providing wireless communication solutions – including command and control (C2) links for unmanned systems. Our embedded communication solutions for drones and robotics have logged more than 2.5 million flight hours without a single link failure. As the number of unmanned systems for air, land and water increases, it is imperative for manufacturers and operators to use rugged, reliable and secure C2 solutions with high-speed data transmission. We are dedicated to continuing to provide robust and trusted solutions. Not only do we focus on providing a great technology, but a solution that can be trusted to operate when human lives are at stake. We hope you have a wonderful Fourth of July holiday!
Intelligent Decision Making in Precision Agriculture
Modern businesses are making intelligent business decisions thanks to the Industrial IoT and its push towards increased connectivity. In precision agriculture, new technology has the potential to be a game changer for crop management, enabling more visibility over crops and intelligent decision making that directly impacts food output. However, according to a recent article from CropLife magazine, while farmers are leveraging automation, the precision agriculture industry as a whole is relatively new in comparison to the traditional agriculture industry, and so is the adoption of IT technology. The exciting news is that farmers are increasingly turning towards automation to streamline operations. As automation and connectivity are adopted for precision agriculture, there is an emerging market for drones that is ripe with possibility. A recent article focusing on drones in agriculture reports, “With precision agriculture, farmers can now rest assured that they are making crucial decisions correctly and intelligently – made easy through drone analytics.” Drone manufacturers are actively working to make technology that they believe will change the game for precision agriculture. They aim to improve food production and more efficiently distribute pesticides and water. Drones may also aid in disease management for the diseases that rapidly spread through crops. With the use of cameras, drones are also able to offer farmers real-time visibility into the health of their crops. With the rise of drones in the commercial and industrial sectors we see a lot of opportunity for drone manufacturers, technology providers and farmers alike. What we also see as a key to success in all these areas is technology that performs with consistency and reliability. In the case of drones, without secure and reliable command and control (C2) links, drone performance will suffer, and as a result so will the important data that farmers will find essential to making intelligent decisions. Command and Control Links There are technologies available that have proven to unfailingly support critical drone operations. In fact, after decades of serving mission-critical applications in government and defense, the same C2 capabilities of advanced wireless data communications have begun to migrate into the commercial and industrial drone markets. Today, there are a number of secure wireless data communications solutions available that enable reliable C2 links and have been trusted by the government and defense industry for years. Additionally, there are solution providers that offer multiple frequencies for C2 links offering unmanned systems manufacturers a portfolio of options to deploy. In addition to frequency options, when the appropriate security measures and encryption capabilities are in place, C2 links can be better protected to thwart malicious attacks on unmanned systems. For the precision agriculture industry this means less downtime and reliable drones for operations that are critical to the health of the crop. Drones and other modern IT technologies are disrupting the precision agriculture industry, but there is substantial potential for a big impact on the farming industry as a whole. As drones are developed to carry out these applications in precision agriculture is especially important to ensure they are being created with the C2 links that will support modern connectivity needs.
Smart Border Protection
Plans for “The Wall” at the U.S./Mexico border appear to be driving forward. Recent reports indicate that building the border protection wall could cost upwards of $22 Billion. However, news coverage suggests that there is a more cost-effective solution in using drones to create a ‘virtual wall.’ Time will tell whether the current administration will consider replacing all or parts of the physical wall with modern drone technology to intelligently monitor rural and desolate parts of the border. In fact, some are reporting that it’s a possibility. On the other hand, several companies have already been selected to build prototypes of the border wall. Perhaps the final solution will be some combination of both, as The Department of Homeland is actively seeking border monitoring solutions in drones for Border Patrol. Drones at the Border In 2014, it was reported that Predator drones were patrolling nearly half the U.S./Mexico border. These drones were used to monitor rural areas for illegal immigrants, human traffickers and drug cartels – covering parts of the border where there are no US Customs and Border Patrol (CPB) agents, camera towers, ground sensors or fences. The Predator drones used for these purposes were designed for the battlefield, and unfortunately a report from December 2014 found that they did not achieve the intended results. Today, The Department of Homeland Security is looking to use smaller drones with facial recognition as part of its Silicon Valley Innovation Program – a program created to, “cultivate relationships with technology innovators, particularly non-traditional performers, from small start-ups to large companies, investors, incubators, and accelerators.” A contractor solicitation notice that was issued last summer (and closed on April 27, 2017) by DHS requested specific requirements for these border patrol drones. According to NBC News, the Department of Homeland Security was “flooded with bids” for these smaller drones. Here’s a small sampling of what the solicitation was requesting (see the full solicitation for the detailed list of requirements): Functional across a variety of weather conditions and times of day Ability to detect the following items of interest within required detection range: humans traveling on foot (alone and in groups), humans traveling on animals (e.g., horseback), and moving ground conveyances (e.g., All Terrain Vehicles, motorcycles, automobiles, and trucks Easy to navigate and operate Sophisticated sensors, with advanced capabilities – such as infrared and facial recognition capabilities sUAS capabilities (sUAS typically applies to smaller consumer-grade drones under 55 pounds) Hypothetical natural language voice command system While the request includes a broad range of desired capabilities, an article in The Verge suggested that, “the greatest challenge facing contractors is how to stream data from the devices, since much of the border lacks conventional cellular service.” Connecting Where Cellular Can’t From a technology standpoint, consumer-grade drones for border patrol are going to need secure, reliable and rugged command-and-control (C2) links. There are a number of secure wireless data communications solutions available that enable reliable C2 links. These solutions have been trusted by the government and defense industry for years, offering secure, reliable links with more than 60 miles Line of Site (LOS). There are C2 solutions providers that have operated in unmanned systems for millions of flight hours in some of the harshest weather conditions without a single broken communication link. Drone manufacturers also should consider these types of C2 solutions because they offer secure wireless data communication by leveraging data encryption capabilities that adhere to FIPS and AES standards. Some non-cellular solutions are also proven to be reliable and secure in nature which further boosts the overall data security scheme. Frequency-hopping techniques, for example, leverage coordinated, rapid changes in radio frequencies that “hop” in the radio spectrum, evading detection and the potential of interference. Some wireless products also deliver multiple user-defined cryptography keys (as many as 32 user-defined keys in some cases), providing a more robust link security by allowing the automatic and frequent changing of cryptographic keys. As drones are deployed more frequently for mission critical operations at our borders, it will be imperative to leverage secure C2 links that can support modern data needs in real-time while keeping the links secure. With the comfort of these powerful C2 links, Border Patrol agents can effectively monitor, assess and act upon threats in the most efficient manner possible.
FreeWave at AUVSI Xponential – Booth #3142
AUVSI XPONENTIAL 2017 is just around the corner and we couldn’t be more excited! Unmanned systems from some of the industry’s leading technology providers will be on display, and we’re looking forward to putting our embedded systems solutions out there as well (booth #3142). It’s a potentially transformative time for the unmanned systems industry. As military spending budgets increase, along with the adoption of unmanned systems for air, land and water, manufacturers and operators will need rugged, reliable and secure C2 solutions with high-speed data transmission. Reliability and security are two extremely critical factors in the ongoing development of unmanned systems solutions, especially for commercial deployments. For years, the government and defense industry has been on the forefront of secure unmanned systems, but as the commercial sector begins to utilize unmanned technology, the ability to ensure secure command and control can be the difference between reliable industry operations and serious injury. Clearly, security considerations for unmanned systems are going to be an ongoing hot topic at XPONENTIAL and into the future. We have spent the past 20 years supplying secure, rugged and reliable embedded solutions for government and defense, precision agriculture and beyond, and as a result, we hold a firm belief that the unmanned systems solutions providers for the next generation need to be hyper-vigilant with regard to the industry. With that in mind, we will be offering demonstrations of our latest C2 solutions for unmanned systems at XPONENTIAL this year. Booth attendees will get a first-hand look at our solutions, offered in a small form factor ideal for drones and robotics that have logged more than 2.5 million flight hours without a single link failure (https://www.freewave.com/unmanned-systems-drones-robots/).
A ‘Heads Up’ on Drone Safety
We all know that what goes up must come down. In the case of drones falling out of the sky, hopefully your head isn’t in the collision path. Drones are becoming increasingly popular for commercial and recreational purposes. According to a recent FAA report, this has sparked an “increase in accidents resulting in blunt impact or laceration injuries to bystanders.” The report, released late last month, generated a fair share of news coverage. It examines the dangers of drone collisions with people on the ground, the risk of injury and ways to reduce those risks. The good news, and probably most newsworthy conclusion, is that if a small drone were to hypothetically fall from the sky and collide with your head, you probably won’t die. One of the tests conducted during the study included dropping a drone on the head of a crash test dummy. The drone used in the test represented a typical drone — a Phantom 3, which weighs about 2.7 pounds. Test results determined that a drone causes significantly less damage than a wood block or steel debris. Findings also showed that the “drag,” caused by air resistance slowed the drone down much more than the wood and steel. A USA Today article reported that while there was only a 0.01 to 0.03 percent chance of a serious head injury, but there was an 11-13 percent chance of a serious neck injury. While the risk of serious injury might be lower than expected, both drone manufacturers and operators of remotely piloted aircrafts can continue to actively take responsibility for the risks by operating from a preventative and safety-focused perspective. A combination of proper training, education and reliable, secure command and control links (C2) can lead each side to a safer drone environment. Knowing the Rules Groups have formed with commercial drone safety in mind. Know Before You Fly is an organization dedicated to educating drone operators on the FAA guidelines for operation. They also offer resources on how to safely and responsibly operate unmanned aircraft systems (UAS). The FAA report also names Academy of Model Aeronautics (AMA), Association of Unmanned Vehicle Systems International (AUVSI), and the FAA as groups dedicated to educating hobbyist and commercial UAS users on the important requirements for piloting UAS. New drone operators who leverage the assortment of educational tools available can help champion the pursuit of responsible drone operations. Building Drones with Reliability and Safety in Mind In addition to training and education from the operator perspective, when the right command-and-control (C2) solution is in place, drone operations can become much more safe and reliable. Secure wireless data communication solutions that leverage data encryption capabilities, adhering to FIPS and AES standards, are already heavily relied on for mission-critical government and defense applications. Additionally, certain types of wireless solutions, like Frequency Hopping Spread Spectrum Technologies (FHSS) are secure in their nature. For example, frequency-hopping techniques can leverage coordinated, rapid changes in radio frequencies that literally “hop” in the radio spectrum, thus evading detection and the potential of interference Some wireless products also can deliver multiple user-defined cryptography keys (as many as 32 user-defined keys in some cases), providing more robust link security by allowing the automatic and frequent changing of cryptographic keys. In addition to secure data, these solutions also offer distance. There are FHSS radio solutions that can transmit more than 60 miles Line-of-Sight (LOS). When the communication links are robust and prevent interference, they are much less likely to be jammed or disrupted, ultimately preventing drone performance issues (i.e., falling from the sky). This is a very important consideration because of the growing number of unmanned vehicles operating in industrial and commercial sectors today. With a secure and reliable wireless C2 link, these technical issues are substantially reduced. Drones have opened the door for many hobbyist and commercial opportunities, but that also means there are more inexperienced operators. If an operator educates themselves on the FAA guidelines and safety procedures when operating a drone, and the manufacturers build in a secure and reliable C2 link that works over long distances, then both are taking the steps to decrease drone-related injuries. Although the FAA report shows the risk of serious injury and death is low, manufacturers and operators still need to keep safety a top priority.
Precision Agriculture Benefits from Rise of Next-Gen OEM Technology
Precision agriculture has long been one of the leading industries for deploying cutting-edge OEM technology. Autonomous vehicles, sensor systems and data-driven analytics are all examples of technology that the precision ag industry embraced well ahead of widespread adoption. Today, precision agriculture is responsible for a sizable portion of our national economy, and the accompanying technology appears poised to push management practices even further into the realm of the Industrial IoT. This week, we’re highlighting two tech trends driven by the growth of next-gen OEM technology and looking at the effect those technologies are having on the industry as a whole. Agriculture Drones Perhaps one of the most immediately obvious areas of development is the commercial drone industry – specifically, as it applies to its application in precision agriculture. Research and Markets announced last week that it expects the agriculture drone market to reach $3.7 billion by 2024 – a scant seven years down the road. The report cites innovations in GPS mapping, OEM systems that incorporate advanced analytics, and an increase in the automation of the agriculture process as driving factors in the expected market boom. On a Commercial Drones FM podcast, Thomas Haun, VP of strategy and globalization for PrecisionHawk, discussed the accelerated convergence of commercial drone hardware and software. He looks at drones as having the unprecedented ability to redefine and change the foundational verticals due to the innovative applications that are being enabled by advanced hardware and software. Even though precision agriculture has never been shy about leading-edge technology, drones may just upend the industry even more than most analyst originally predicted. OEM and IoT via Satellite Northern Sky Research recently looked at how OEM is intersecting with IoT powered by GPS and satellite technology. The report notes that most new installs of M2M and IoT technologies will be powered by precision GPS: This is a more data-intensive type of data gathering for Agriculture applications, where data points such as machine performance, moisture levels, pesticide levels and other characteristics are all harvested and optimized on a higher resolution coordinate system in the field, essentially, a real ‘smart farm.’ The deployment of precision GPS technology is a notable departure from the traditional meter-reading applications that have driven agriculture technology in the past. These new ‘real smart farms’ will have the ability to collect that data run real-time decision making powered by data analytics. The report also highlights the expected boom in partnerships with agricultural equipment manufacturers, driven mostly by the growth in the “number of OEM installs in farming equipment such as forklifts, tractors and dozers …” The result looks something like a smart network with proprietary third-party applications responsible for delivering automated, data-informed decision making in real time. Intelligence at the Farm’s Edge If the two trends mentioned above come to fruition, the precision agriculture industry will see a successful transition from ‘big’ data to ‘smart’ data. If programmable OEM technology can be integrated into new and existing farm systems, the industry will see intelligence and analytics being deployed closer to the edge – the point of data collection – than ever before. Drones are becoming critical tools of for data collection and asset monitoring, and as GPS precision continues the improve, the farming industry is poised to reap the benefits of increased data-driven intelligence.
Drones and Emergency Response Teams – Friend or Foe?
The drone business has been flying high for the last few years, especially as they became popular consumer devices as regulatory and technological frameworks continue to take shape for greater implementation into the National Airspace (NAS). Much has also been written though about the possibilities of drones igniting the next wave of innovation for enterprise specific applications in precision agriculture, oil and gas, construction, asset monitoring and delivery, and mining. However, it’s clear that the military sector will continue to lead all other sectors in drone spending for the foreseeable future, thanks to worldwide demand of this technology. But perhaps the most intriguing applications for drones in the coming years are those related to safety – public safety, that is. State and local governments are certainly beginning to take their SWOT (Strengths, Weaknesses, Opportunities, Threats) analyses of implementing drone technologies for their own emergency response efforts. Why just two weeks ago, local officials around Japan were looking at drones to help “beef up” their disaster response programs, in the event of a major disaster such as an earthquake. Even last week the North Carolina Department of Transportation’s Division of Aviation collaborated with close to 50 state and local government agencies and researchers for a workshop about the use of drones in crisis situations. North Carolina is also looking at applications for drones for monitoring rockslides along Interstate 40 at the Tennessee border (a common headache for DOT officials). However, one of the critical discussion points during the workshop was looking at ways to ensure private owners of drones (with or without the best of intentions) don’t interfere with or further complicate emergency response efforts. Are Drones Friend or Foe? According to the FAA’s newest estimates, we can expect about 7 million drones to ship to the U.S. by 2020. Which also means, our skies are likely to become much more crowded with not just private consumer devices, but possibly many more commercial devices as well. This is where an early examination of the cost/benefit analysis of drones used in emergency response support may prove to be helpful. By several accounts already reported, numerous police departments, local and regional government agencies, fire departments, Community Emergency Response Teams (CERT) and even lifeguards are already adopting and testing drone technologies in the event of an emergency response situation. By no means do we expect that trend to discontinue. However, it is also important to get a handle of what the negative outcomes could be so that technology companies like FreeWave can help address these issues now through technical guidance, tech innovation and considerations for implementation into the NAS. Based on what we’ve gathered so far, by far the biggest concerns for drones being used in emergency response is when it interferes with corresponding aviation efforts. There are numerous accounts of private drone pilots causing challenges for search and rescue and firefighting efforts. Just yesterday the Texas A&M Forest Service was reported to have asked its local residents to not fly drones near the wildfires they are trying to battle near college station. Drones were said to have caused a serious safety hazard for firefighters and halted the assistance of other firefighting aircraft. Another instance was in Sharp Park in Pacifica near San Francisco when search and rescue crews were delayed in their rescue mission when a drone flew much too close to the helicopter that was trying to save someone who had fallen off of a cliff. The point here is that while many of the newly born issues from drone flights are based on human oversight or error. It shines a light on just how new this new technology really is (for consumers and enterprises) and how much there still is to learn. We expect to see much more regulation get handed down in the coming years (on a local, state and federal level) to help curb errant drone usage in our increasingly crowded airspace. Furthermore, sense and avoid tactics between disparate aircraft will become even more paramount with each new drone flight. If you would like to learn more or want to add your own take to the drone discussion, please comment below!