JavaOne 2016 Recap
JavaOne had the pleasure of taking San Francisco by storm. The 2016 conference left little to be desired, with more than 450 java-focused demos, labs and sessions with peer experts, plus time to network with this high-tech crowd. This year aimed its attention at young coders, enterprise, developers and the tools they need to keep innovation alive. If by chance you weren’t part of the masses that migrated to San Francisco, this week’s recap is dedicated to JavaOne highlights. So sit back, relax and enjoy this week’s recap. Opening Keynote Hints At Ambitious Changes In Next Version Of Java By @Oracle | Published on @Forbes “A common theme in the keynote was the promised modularization feature, Project Jigsaw—which enables Java programs to ship and run with much smaller footprints, thereby using fewer system resources.” Java EE moves forward once again By Alex Handy | Published on @SDTimes “The state of innovation in Java EE was so in question that, earlier this summer, the Java Guardians were formed to champion the platform and demand that it be pushed forward. At JavaOne today, Oracle finally detailed its plans to address the neglected enterprise Java platform. Alongside that road map came new information on the in-development Java SE 9 and OpenJDK 9.” Audience Gets a Glimpse of the Power of JShell By @mon_beck | Published on @InfoQ “During his JavaOne 2016 keynote, Mark Reinhold, Chief architect of the Java platform group pointed out that Java 9 is much bigger than Jigsaw as can be seen in the 85 JEPs targeted for Java 9. I would like to discuss one new Java feature he highlighted, JEP 222, the Java shell (also known as JShell.) With JShell, Java 9 will enable developers to use Read-Eval-Print loop (REPL) which is an interactive tool that evaluates user input and prints the output either as a value or a state change.” A boost for cloud app developers By Admire Moyo | Published on @ITWeb “Oracle says by giving developers a choice of programming languages, databases, compute types, operating systems and virtual machines, integrated development environments and tools, the company provides developers with the choice and flexibility needed to build modern applications in the cloud.” Top Tweets During the Event! Women in tech are taking over Posted by @java Times are changing as women in tech fill up the next JavaOne panel discussion. Talking code, programming and technical specifics is no longer a man’s world. https://twitter.com/java/status/778694106503532545/photo/1 Don’t forget your Star Wars costumes! Posted by @hendrikEbbers JavaOne asked us to reach for our inner Star Wars fan, by giving away Star Wars stickers to the first 50 people that dressed up in their best Star Wars gear. We are still looking for the proof. If you did dress up, please share your pictures with us! https://twitter.com/hendrikEbbers/status/778347600600719360/photo/1 ReadWrite Meets FreeWave! Posted by @citizencaen The excitement around JavaOne was palpable! We were thrilled to finally meet the Chris Caen from ReadWrite as we caught him up on the new partnership announcements with Teachneaux and Resilio. We also had the pleasure of showcasing our latest ZumLink IIoT Programmable Radio at JavaOne, as pictured below. Chistorpher Caen with ReadWrite caught up wtih Michelle Marceny at FreeWave Technologies. Caen found out that, “When FreeWave says their devices have 2.8 million combat hours, they really mean combat hours.” https://twitter.com/citizencaen/status/778662244276064257/photo/1 JavaOne Entertains in Style! Each night was filled with social networking, good food and drinks. Wednesday night they pulled out all the stops grabbing the attention of both young and old by having performances by both Sting and Gwen Stefani. Lots of fun!
Seismic Shift in IIoT Monitoring
There’s been a seismic shift in monitoring earthquakes via the Industrial Internet of Things (IIoT) with advanced Machine-to-Machine (M2M) technology have reshaped the industrial communication industry. Every device or machine along the network, even at the outermost edge, now has the opportunity to be fully-connected for automated collection and delivery of information. As Sensor-2-Server (S2S) communication technology evolves to keep up with the demand for this connectivity paradigm, new efficiencies are created and Big Data is available to drive actionable intelligence. Seismic Shift Data that Saves Lives The sheer quantity of available data, combined with the speed of automation can support mission critical applications that are designed to save lives. Research centers can leverage IoT networks to relay critical data in real-time from areas where earthquakes are a common threat to people living nearby. While natural events like earthquakes and volcanos are not avoidable or fully predictable, an IoT network can potentially help reduce the level of devastation through close, reliable seismic monitoring via highly sensitive and advanced sensor technology. S2S communications monitor and send data from remote areas where Earth changes are first detected, to the monitoring authorities who are closely tracking seismic activity. S2S solutions leveraged for early detection of these events can enable authorities to warn citizens in advance to take appropriate precautionary measures. When robust, rapid, real-time monitoring is combined with effective emergency communications, human casualties can be significantly decreased. Seismic Shift and the Ever Changing Landscape IoT has been adopted at such a rapid pace that the demand for modern, sophisticated communication technology is driving constant changes in remote, industrial communication networks that will further advance applications like seismic monitoring. These changes have clearly disrupted the traditional Supervisory Control and Data Acquisition (SCADA) market. While SCADA systems are not obsolete, industries like environmental monitoring will continue to leverage new technologies designed to help seismologists make more informed decisions than with just SCADA alone. Now, network operators can evolve and adapt their monitoring programs over time through the IoT with edge devices that allow third-party software applications to be deployed network-wide. This has not only opened new doors for software developers, but it opens up the opportunity for advancements in environmental monitoring to further improve natural event monitoring. Fast and accurate data transport from the sensor networks in seismic monitoring therefore requires robust and reliable technology that doesn’t fail in remote and sometimes harsh environments. RF technology, for example, is advancing to help field crews make intelligent decisions and closely monitor the elements that can help delivery early warning for natural events. Find us at JavaOne this Week