Inmarsat announces FreeWave as partner for global IoT

Inmarsat announces

May 18, 2023 The agreement will see enterprise customers gain operational advantages through proven, reliable satellite connectivity services. Inmarsat, a world leader in global, mobile satellite communications, has announced FreeWave Technologies – a leading Internet of Things (IoT) solutions provider – as a Distribution Partner for its L-band satellite IoT services. The partnership, signed at this week’s IoT Tech Expo in Santa Clara, California, will focus on the integration of Inmarsat’s IsatData Pro (IDP) service in FreeWave’s end-to-end IoT solutions, initially with standalone hardware terminals, with a view to integrating IDP core modules into IoT hardware and assets in the future. IDP is a two-way, real-time, non-IP messaging service that is used globally to connect mission-critical assets in remote locations where regular terrestrial connectivity is limited or non-existent. IDP is enabled by Inmarsat’s ELERA geostationary L-band satellite network, with ultra-reliable performance and robust network security. The agreement will provide FreeWave’s customers with reliable, cost-effective, and scalable connectivity solutions to meet their mission-critical IoT demands across global industries, including agriculture, oil and gas, and utilities. The new relationship will also support the IoT uses of businesses operating in the environmental tracking space – including earthquake and flooding monitoring firms. Jat Brainch, Steve Wulchin and Jeff Horton meet FreeWave at IoT Tech Expo in Santa Clara Jat Brainch, Chief Commercial and Digital Officer, Inmarsat, said: “We’re excited to be welcoming FreeWave as an Inmarsat Distribution Partner. FreeWave is an established name in the IoT market and we are looking forward to collaborating with them to build customer-centric solutions as we both look to grow our IoT footprint. “We are particularly focused on the positive sustainable outcomes we believe this partnership can provide FreeWave’s customers. After all, you cannot manage what you cannot measure, and we believe solutions that enable better automation and digitalization of the data capture process to collect granular, real-time results are increasingly essential to achieving our collective Net Zero goals in the future.” Jeff Horton, Chief Revenue Officer at FreeWave, said: “We are delighted to become an Inmarsat Distribution Partner. Inmarsat’s bi-directional IsatData Pro service is unique in the marketplace and perfectly suited to the needs of our customers. We look forward to working closely with the Inmarsat team over the coming months to grow our market share in the satellite IoT space.” “Sustainability is on the minds of all our clients. Now, being able to offer satellite connectivity that is suited for a myriad of applications will keep their remote devices providing the critical data they need to make better-informed business decisions. We are now able to give them trusted connectivity from Inmarsat that complements our comprehensive offer from data collection to a data platform serving data-driven insights for enhanced decision-making. We are truly excited for what’s still to come from this partnership.” Further information About Inmarsat Inmarsat delivers world leading, innovative, advanced and exceptionally reliable global, mobile communications across the world – in the air, at sea and on land – that are enabling a new generation of commercial, government and mission-critical services. Inmarsat is powering the digitalisation of the maritime industry, making operations more efficient and safer than ever before. It is driving a new era of inflight passenger services for aviation, while ensuring that aircraft can fly with maximum efficiency and safety. Furthermore, Inmarsat is enabling the rapid expansion of the Internet of Things (IoT) and enabling the next wave of world-changing technologies that will underpin the connected society and help build a sustainable future. And now Inmarsat is developing the first-of-its-kind, multi-dimensional communications network of the future, ORCHESTRA. In November 2021, Inmarsat and Viasat announced the planned combination of the two companies, to create a new leader in global communications. For further information, follow us: Twitter | LinkedIn | Facebook | YouTube | Instagram. Press contact: press@inmarsat.com About FreeWave Based in Boulder, Colorado, for 30 years, FreeWave Technologies has connected the unconnected with a reliable ecosystem of edge intelligent radios and solutions – manufactured in the United States – to optimize the extreme edge of remote industrial operations. FreeWave has a legacy of solving thousands of customer challenges globally across multiple industries, FreeWave can help transform and future-proof an operation now. Visit to get started. For further information, follow us: Twitter | LinkedIn | Facebook | YouTube. Press contact: smoore@freewave.com

FreeWave Blog Series: The Intelligent Edge (Part 4)

The Internet of Things (IoT) has changed the consumer world in ways no one ever imagined.  By placing intelligence in the IoT network, the “Thing” can do whatever we want it to do.  Now Industrial companies are seeking to take advantage of this edge-deployed intelligence in order to maximize profits, improve safety and streamline operations. In addition to the challenges IoT technology had to overcome – such as cybersecurity, scalability and interoperability – Industrial IoT (IIoT) must also focus on reliability, ruggedness and more. FreeWave is uniquely positioned to understand and address all of these challenges. We have delivered world class IIoT platforms for almost 25 years to thousands of industrial and unmanned systems customers. With that experience, we’re now leading the charge to deploy intelligent applications at the edge of industrial networks and unmanned systems. In the fourth installment of “The Intelligent Edge,” we spoke with Helen Xi, a senior firmware engineer at FreeWave who specializes in high-speed wireless LAN performance, to talk about the use of broadband in the IIoT, as well as FreeWave’s industrial Wi-Fi platform, the WavePro. Read parts one, two and three. FreeWave: Can you talk a little bit about the WavePro platform and where it fits into what you work on at FreeWave? Helen Xi: In our company, the radios mostly operate in the narrowband frequencies, however WavePro is a broadband Wi-Fi system. It’s important for us to have this Wi-Fi system because nowadays there are so many Wi-Fi clients. It’s on every mobile phone, in every laptop, in every household. It’s everywhere. You can’t avoid it. When we have this Wi-Fi product, we can provide a whole communication system to customers. It’s easier for us to integrate them together to make sure they work from our Wi-Fi system to our narrowband radios. Our WavePro product has many features. If you compare it with the industry competitors, they have multiple products and models that meet customers’ specific needs. If you want to provide a long-distance point-to-point link and you buy this model, and you want their system to provide Wi-Fi local coverage, then you must buy another model. WavePro integrates all these features together in a single product, and we can do long-distance point-to-point link, local Wi-Fi coverage and mesh. It can have different clients while providing a backhaul communications in a remote area. FreeWave: Walking back a little bit on some of what you just talked about, one of the things that we’ve been discussing is the transition from traditional RF technology into technology that requires higher bandwidth to transmit bigger data packets in real time and run analytics at the Edge. With WavePro, what I’m wondering is when you talk to clients, what is their number-one priority with this technology? Are they trying to update existing systems or are they wanting to implement entirely new systems? And how important is the broadband aspect? Helen Xi: I think both. Let’s say they want to upgrade an older system. Let me give you an example: nowadays because there are so many Wi-Fi clients, Wi-Fi chips are so well-known, and more sensors have Wi-Fi client chips inside them. If we put our WavePro in the field, it can work as an access point (AP) to talk to these sensors. By the way, our product is an outdoor unit. It’s waterproof IP67. IP67 means you can immerse it underneath water. It has the same industrial-temperature range as our other narrowband radios. It goes from minus-40 up to 70 Celsius. It also has surge protectors from lightening. So, you can safely put it outdoors. If you buy a home Wi-Fi router, say from Netgear, you probably do not want to put it outside. FreeWave: And why is that element important? Helen Xi: Because a lot of our customers use it outdoors. For example, in North Dakota, it’s very cold. It can be minus-20 Celsius. I think you can imagine what happens to your iPhone during winter when you go skiing – it goes dead. Our radios don’t do that. You put it outdoors, on the oil-gas fields where it goes from winter to summer – as cold as North Dakota, as hot as Texas in the deserts – and it’s working well. That’s why the temperature requirement is important. FreeWave: When you’re talking about application examples, where else are you seeing this technology deployed? Helen Xi: It can be used in many areas of the Industrial IoT. For example, we have a utility company that uses WavePros to control large quantities of air conditioners on the roof of two apartment buildings. Each air conditioner has a 2.4GHz Wi-Fi chip in it. They all connect to WavePros on 2.4GHz. One WavePro (we call it “master”) is connected to the utility company’s network. The other three WavePros (we call “slave”) connect to the master WavePro on 5GHz. When the utility company needs to send command to air conditions, it first goes to the master WavePro; the master WavePro passes on its 5GHz to the other slave WavePros; then, the  slave WavePros transmit on 2.4GHz to each air conditioner. FreeWave: What do you envision being the trend of the future with regard to Industrial IoT communications? Is it all headed toward broadband? Or do you think that there will still be a balance between that and cellular and RF? Helen Xi: This is a very good question. I believe it will be a combination. I want to elaborate why I think narrowband is still very important where people seem to only be talking about gigabits. Wireless as a resource is very valuable – every Hz (hertz) is valuable. When you are using a frequency band at this location at this instant, other people cannot use it. You are noise to other people.  Plus, not every Hz is free to use. In IoT, we’re mostely using unlicensed band that you don’t need to pay a fee to the FCC to use as long as you follow rules. There are only

The Industrial IoT Risks You Must Not Ignore in 2018

The haste to adapt IoT technology has left many enterprises facing a growing problem: IoT security. How network and systems architects respond could determine the long-term viability of IoT technology. An interesting paradigm within the Internet of Things has emerged. Stay with us here: IoT technology is designed to improve efficiency and make everything “smarter.” IoT technology is especially vulnerable to security breaches. These security breaches are costly operationally and financially – to the tune of $2.5 million per attack for large enterprises. Security is not the focal point for IoT engineers and developers. One of those statements doesn’t add up.   Like other new technologies before it, IoT is going through its honeymoon phase. Can we cut out a manual process? Can we improve data transmission speeds? Can we make our machines smarter? When the answer is yes, the solution is IoT technology. But the haste to adapt to these new possibilities has left many feeling a growing and very real problem: security. How network and systems architects respond to this problem could determine the long-term viability of technology that holds either the promise or the challenge of fundamentally changing the way our industrial sectors function. For decades, Supervisory Control and Data Acquisition (SCADA) systems have played a significant role in industrial operations. Industries like oil and gas, electric power/smart grid, agriculture, and utilities have implemented SCADA systems and networks to collect data and automate processes, and are always looking to automation systems for more effective ways to operate. The capability to collect more data from geographically dispersed field assets in remote locations has driven the need for enhanced communication technologies. The number of sensors and data points collected will continue to rise dramatically with improved connectivity. This collected data helps operators improve operational decisions, save manpower and, in many instances, keep employees safe by avoiding dangerous environments. Today, industrial network operators are increasingly implementing end-to-end IP connectivity or the Internet of Things (IoT), enabling more capabilities at the edge of these networks. This does not make SCADA systems obsolete by any means; it opens the door to greater possibilities of enabling new applications and analytics with every single data point being captured in the system. There are many implications for the concept of a connected enterprise in terms of network security. Critical infrastructure projects are only as reliable and secure as the technology serving them. Security, therefore, will ultimately be the limiting factor on how much IoT technology is deployed. With security, the traditional trade-off is either “easy to use” or “secure”— but not both. We often consider features to be part of the equation, though in most cases operators are not willing to trade off features. Today’s security challenges Traditional SCADA systems have several challenges when it comes to security. With more data being transported than ever before, it’s important not only to secure assets, but to secure the communication link itself. Traditionally, SCADA systems have been on the outside of a firewall from the corporate IT network. Newer SCADA systems that use Ethernet devices are more security focused with measures such as VPN, secure sockets, encryption, and dedicated log-ins on the devices. Intelligent sensors offer value With the growing use of IoT technologies, operators must realize that the system is not only providing a communications path, but also enables intelligent sensors that provide additional value when using that path. Rather than just Remote Terminal Units (RTUs) and Programmable Logic Controllers (PLCs) at the edge of the networks providing data, the sensors themselves may be running an application on the edge of the network, and many of these devices are using IP. IIoT sensors bring more capabilities and increased connectivity to these devices, and their full value may not be realized if the only connection to the device is through a PLC or RTU. Long-promised benefits, such as assessing predictive failure, become possible when the device can be accessed directly. IoT implies that data flow is no longer strictly controlled and only accessible via the SCADA system, but that data in any form from any device can be accessed by any system which needs it. There is no longer a reliance on SCADA system providers to support device compatibility if the data can be accessed through another means. With IoT, many industries are now looking at how every single asset, across every facility, can be connected through the internet (or an intranet), making data readily available to key decision makers, without the time and resource bottleneck of routing all of that information through a central SCADA system. When there is Ethernet everywhere and IP devices going out to the edge in the field, each one of those devices has the potential to become a threat to the entire corporate IT network if not secured properly. In comparison to a traditional SCADA system, this is a communication network on a much larger scale with thousands of potential end points. Operators in IIoT environments need to be concerned with everything that could be introduced to the network at every single connection point. This IoT data can be extremely useful, but safely enabling it requires a network that can meet the necessary security requirements. Using standards like TLS/SSL and basic AES-128 data encryption, secure connections can be established, even where data moves across an open network and it’s assumed that an unauthorized party could potentially see the traffic, such as in an Industrial IoT environment. When data is properly encrypted, an unauthorized party cannot access it even if they can see it. In wireless connections, standards-based connections allow relatively easy access to the moving data, leaving encryption as the only line of defense against snooping. The dangers that lurk in IT/OT convergence Traditionally, companies have a corporate firewall that divides the corporate IT space from operational technology (OT) space. With an IoT network this division is greatly reduced, and so there is a need to protect the sensors and new applications on the OT side. However, even with a secure communication

IoT News Roundup: Where is IoT headed?

The holiday season is fast-approaching and it seems there’s always a never-ending list of tasks that need to be completed every year. Just like the holiday checklist, tech in the IoT space seems to be ever-changing and expanding. As tech leaders and innovators we understand that life is hectic and unpredictable, but to make sure you don’t miss a beat, check out this week’s line-up for news in the IoT industry. Previously, we explored “How IoT is Saving Lives” when two massive natural disasters struck the U.S. In this post, we’ll ask the question, what’s next for the world of IoT/IIoT? Take a look at some of the top stories from the past couple of weeks: Forrester predicts what’s next for IoT In this recent post from @NetworkWorld about Forrester Research’s predictions post, Fredric Paul, @TheFreditor, asks the question on many people’s minds: Where is IoT headed? Among many points Paul makes in his article, one points out how IoT is likely to become more specialized in the coming year, moving away from generic hardware and software into platforms designed for specific industries. So-called “design and operate scenarios” will let IoT developers focus on the attributes that matter most to their own industries and use cases. Smart networks must evolve for mission-critical environments   From @embedded_comp, Michael Ulch explains how the IoT industry has been flooded with advances in smart home automation, self-monitoring appliances, and connected security systems. All of these facets are important for the IoT existence but Ulch asks the same question as other reporters: what is next for IoT? Ulch believes that some of the greatest potential of the IoT is in the industrial and manufacturing realm, where Industrial IoT (IIoT) has the promise to monitor systems for preventative maintenance and boost energy efficiency and workplace productivity. However, Ulch says, successfully scaling from the smart home to the smart factory will require overcoming a number of technical challenges.   How manufacturers are benefitting from the IoT revolution In this @NetworkWorld article by Majid Ahmed, it’s made clear that few people stand to benefit more from the IoT revolution than today’s manufacturers. Ahmed states in his article that whether it’s harnessing the power of data and metadata to make wiser decisions, or developing new and more efficient technologies capable of saving energy cost, the IoT is fundamentally reshaping how manufacturers produce the goods we use in our everyday lives. Businesses not aware of IoT issues This article from @techradar by @maxcooter ‏ briefly starts off by referencing an article from January, 10 surprising trends in the IoT for 2017, then Cooter continues, stating that Cradlepoint survey finds lots of interest in technology deployment but lack of security awareness. Cooter points out that, from these findings, IoT-using companies should be prepared to have a thorough overhaul of its infrastructure before deploying the technology. Despite the serious concerns about security, most are not having a second thought about rolling out IoT. Will this security breach take down most companies? Time will tell.   The Industrial Internet of Things is Here to Stay In this article from @cbronline (Computer Business Review), author David Stain discusses how manufacturers are welcoming in a new era of productivity by enhancing Industry 4.0. The IIoT is at the heart of this transformation. Stain explores how a company’s success is often linked to its efficiency, hence visibility, across the plant floor, and how extending into the supply chain is a necessity. To keep pace with this competitive environment and the ever-increasing customer demands, every stage of the manufacturing process is facing the digital revolution. Final Thoughts: Virtually all industries and workers are benefitting from the technological revolution brought about by the inception and ensuring growth of IoT. Every industry does need to be cautious of the security threats that IoT comes with. Knowing this, we will still continue to see the growth for IoT especially in the manufacturing and Industrial industries.   Be sure to stay tuned to our blog for the latest industry news and to read more about our own insights into some of these major trends.

Four Ways to Optimize Your Operations for IIoT

The phrase, “the future is here,” is overused and has evolved into a catchphrase for companies struggling to position themselves in times of technological or digital transformations. Still, the sentiment is understood, especially in times like today, where the Internet of Things is quite literally changing the way we think about hardware and software. We’d like to offer an addendum to the phrase: “The future is here more quickly than we thought it would be.” Digital transformation, increased computing ability, smart hardware and the growth of connectivity capabilities created a perfect storm of accelerated industry, and many were left scrambling to sift through the large amounts of information and solutions available. With that in mind, we wanted to provide some advice for companies across the industrial sector for the best ways to optimize operations for the Industrial IoT. 1) Upgrade your network and throughput capabilities. Nothing can kill the ROI of automated processes more quickly than the literal inability to function. It’s important to understand that as you upgrade machinery and invest in the software to run it all, those systems demand greater bandwidth in order to effectively utilize the big data and analytics capabilities. Several options exist, but for most companies some combination of industrial-strength broadband (WiFi), narrow-band, cellular and RF communications will create the most effective network for the needs. 2) Invest in smart hardware. This may seem like a no-brainer, and really, in the not-too-distant future, you may not even have a choice, but the shift toward Fog Computing is gaining momentum and being able to run decentralized computing between hardware and the Cloud can not only create greater operational efficiency, but it can also allow your data transmission to run more smoothly as well. The beauty of a Fog Computing system is that it allows a greater number of devices to transmit smaller data packets, which frees up bandwidth and speeds real-time data analytics. The core of this lies in the smart hardware. 3) Be proactive about application development. Smart hardware means that it has the ability to host applications designed specifically for your needs. Previously, many companies shied away from app development because it required highly skilled developers and devices capable of hosting those apps – a combination that wasn’t readily available. Today, the scene has changed. With the rise of Node-RED, it is much easier today to create proprietary applications without a computer engineering degree, and any company serious about leveraging IIoT technology needs to be able to to use the full scope of its data. 4) Secure your communications. There isn’t much more to be said about the importance of cybersecurity. If the last few years of massive data breaches haven’t rung alarm bells, then you aren’t paying attention. Cybersecurity today is a multi-layered need. Most companies building smart hardware are beginning to build encryption directly into the devices. But, since many companies use Cloud applications for computing and analytics, it is important to invest in strong security measures at that level as well. Unfortunately, the sophistication of cyber-attacks are only going to increase, along with the increase in importance of the data needing to be protected. It pays to be paranoid and act accordingly.  

FreeWave Blog Series: The Intelligent Edge (Part 2)

Part 2: Novice App Dev – A Q&A with Greg Corey from FreeWave The Internet of Things (IoT) has changed the consumer world in ways no one ever imagined.  By placing intelligence in the IoT network, the “Thing” can do whatever we want it to do.  Now Industrial companies are seeking to take advantage of this edge-deployed intelligence in order to maximize profits, improve safety and streamline operations. In addition to the challenges IoT technology had to overcome – such as cybersecurity, scalability and interoperability – Industrial IoT (IIoT) must also focus on reliability, ruggedness and more. FreeWave is uniquely positioned to understand and address all of these challenges. We have delivered world class IIoT platforms for almost 25 years to thousands of industrial and unmanned systems customers. With that experience, we’re now leading the charge to deploy intelligent applications at the edge of industrial networks and unmanned systems. In the third installment – and second half of an interview we ran last week (read part one of the interview here) –  of “The Intelligent Edge,” we sat down with Greg Corey, FreeWave systems engineer, to talk about his new app – ZumDash – and the future of app development of the Internet of Things. FreeWave: Over the course of developing ZumDash, are there any lessons or things that you took away from it that if you could go back and do it again, you would change, or moving forward you kind of see as something that you will incorporate into future projects? Greg: Yes, definitely. I’ve only been using this a couple months, and I’ve learned a lot about it. I think what’s really important about Node-RED is that it empowers non-software developers to solve problems using software, and it’s taught me a lot about the types of problems that you’ll run into when doing software development. There are some challenges I’ve had to overcome in that. But, every release that I make of this app it gets better and it becomes more usable. FreeWave: When you say more usable, what are some of the things that you’ve of tweaked to make that happen? Greg: So, instead of having to change a setting in five different places, you change it in one and then you can store that setting and pull it from there. Bringing stuff to the forefront where a user can modify it instead of having to modify the code underneath. Basically, giving users more control over how the application runs and making it simpler after setup are two of the things I’ve tried to flip this on. Incorporating some UX/UI elements. FreeWave: Are there any high-level industry points that you think are important to consider as well? Greg: One thing is that FreeWave radios have always been just a radio product, and that goes for any radio manufacturer: you put data in and then it comes out the other side. And our radios have been put on sites to do just simply that task. If you look at the consumer space, 10 years ago, and you think of all the devices that we had in our lives, like a GPS navigation device, and then maybe an iPod, and a tablet, and then maybe a voice recorder or something like that. Those are like four or five different pieces of hardware that only did specific tasks. Now, in 2017, everybody has a smartphone, nobody has an iPod anymore, nobody has a GPS navigation device anymore because they’ve all leveraged software on hardware on smartphones. Eventually, radio platforms are going to go the same way. In the industrial setting, people are going to buy a radio and put it out there, then they have all these other specific hardware devices to do these things. What if the radio could be that smartphone where you just leverage some software and were able to cannibalize all these other hardware-specific devices by using software just like the smartphone revolution. FreeWave: So, ‘things’ are becoming not just smarter but they’re having a greater possibility to put interactive software applications onto devices that didn’t really used to have that capability? Greg: Hardware has gotten really cheap and it’s gotten really commodified, so any manufacturer can put together a little hardware solution in a very small form factor. The advantage anymore is not hardware anymore, it’s software because a lot of these hardware manufacturers are using the same chipsets from the same vendors. And, really, the playing platform is equal if you’re making just hardware, but the real secret sauce and the advantage comes in leveraging software on devices. FreeWave: What about the Fog Computing aspect of this that seems to be a growing piece of the puzzle? Greg: Fog Computing – that’s the paradigm where you can have these intelligent Edge devices that are making decisions instead of having everything centrally located. It’s like mainframes back in the day, everything was centralized, and then we got decentralized, right? And then everybody got a laptop. And then going to the Internet of Things, and the IIoT, it’s like we went back to something that was centralized, and now we’re going back to the decentralized aspect, where we’re thinking, “Maybe devices need to be independent and intelligent out on the Edge.” It’s a really broad category. It just depends on what you’re looking to do in a network. FreeWave: Are there any projects or anything that you’re working on that you wanted to share? Greg: I’m constantly improving the usability of the ZumDash right now. And then, I don’t want to say too much, but we’re working on a couple of projects where customers want to implement this type of technology, but we’re not really ready to release names or corporate specifics about these projects. FreeWave: Do you see any other interesting trends or challenges facing the Industrial IoT app development space? Greg: There’s this paradigm that in the future everybody will be a software developer. And the reason that everybody isn’t a software developer today is

Know Before You Buy: How to Find Secure IoT Devices

As the number of IoT devices skyrockets, we are seeing the amazing powers of connected networks. Businesses are able to transform as they approach operations with smart, informed decisions. In the industrial sectors, IT decision makers have visibility into the OT networks and are now able to execute logic locally at the edge devices and transport critical data globally – enabling intelligent command and control of the network. We are starting to see glimpses of a connected world we never knew possible just a few years ago. As adoption of IoT rapidly expands, the Achilles Heel of these devices continues to be security – at least in the minds of end-users and consumers. A Recent report circulating around IoT news outlets states that 90 percent of consumers lack confidence in the security of IoT devices.  Yet more than half of these consumers own one or more IoT devices. The report, based on a survey conducted by Gemalto, revealed other concerning and somewhat astonishing statistics that have been reported in recent articles, including: 60 percent of respondents say their main fear is hackers taking control of their devices. 54 percent are concerned about personal information being accessed. 54 percent of the consumers surveyed said they own an IoT device but only 14 percent said they knew enough about how to protect it. Only 11 percent of manufacturers and service providers total IoT budget is spent on securing devices. Two thirds of organizations use encryption as their main means of security, with 62 percent encrypting data as soon as it hits the device and 59 percent as it leaves it. Only 50 percent of IoT companies have adopted a security-by-design approach. 92 percent of companies reported an increase in sales or product usage after devices have been made more secure, demonstrating a link between security and adoption 61 percent of businesses said regulation needs to be greater to specify who is responsible for security and data at each stage of its journey. 55 percent said safeguards are needed for ensuring non-compliance with security. 86 percent of businesses and 90 percent of consumers believe governments should handle regulation of the sector. Smart Device Selection Despite security concerns, adoption of IoT devices continues to rapidly expand. For industrial IoT (IIoT) networks, future business success is going to depend on connecting those edge networks in order optimize operations, drive production, reduce downtime, and create a safer work environment. When decision makers choose the IoT devices that will be deployed in their networks, it is critical to find products that meet the security and operating standards of the business. This can be determined through a careful evaluation of options. Are you looking to purchase IoT devices for your IIoT network? Consider carefully reviewing and answering these questions before you make your decision: What are your requirements? Must haves versus Nice to haves? Are there any regulatory considerations? What is the M2M communications technology controlling or automating? Is it essential that it operates without failure? What data is being collected and/or transmitted with this technology? Is it time sensitive and/or mission critical? What technology solutions have a proven track record for the applications being served? What external factors might impact the reliable transmission and receipt of critical data from one point to another? How does this M2M communications technology address challenges such as data encryption, network access control and signal interference? Can the vendor describe the security mechanisms? Can you understand them? Will this be secure even if everyone knows the security measures? (The right answer is yes, otherwise keep looking) Do we need this technology solution to be fail-safe, in order to prevent or eliminate catastrophic damage from occurring? What are the threat vectors I’m most concerned about? Is cyber security or physical security a greater concern for this deployment? What vulnerabilities have the Information Security community identified in the type or category of IIoT equipment I use? What is the right tradeoff between features, ease of use and security for my installation? Do I have a testing or evaluation plan in place? What ongoing improvements do I expect? While device security is going to be a lingering concern – especially as the lines between the IT and OT networks blur – companies have the power to prioritize security in their networks and make informed decisions when it comes to selecting their devices. Until there are more government guidelines in place, it is up to the IIoT decision maker to find these options in their quest for connectivity.

FreeWave Blog Series: The Intelligent Edge

Part 1: Novice App Dev – A Q&A with Greg Corey from FreeWave The Internet of Things (IoT) has changed the consumer world in ways no one ever imagined.  By placing intelligence in the IoT network, the “Thing” can do whatever we want it to do.  Now Industrial companies are seeking to take advantage of this edge-deployed intelligence in order to maximize profits, improve safety and streamline operations. In addition to the challenges IoT technology had to overcome such as cybersecurity, scalability and interoperability, Industrial IoT (IIoT) must also focus on reliability, ruggedness and more. FreeWave is uniquely positioned to understand and address all of these challenges. We have delivered world class IIoT platforms for almost 25 years to thousands of industrial and unmanned systems customers. With that experience, we’re now leading the charge to deploy intelligent applications at the edge of industrial networks and unmanned systems. In the second installment of “The Intelligent Edge,” we sat down with Greg Corey, FreeWave systems engineer, to talk about his new app – ZumDash – and the future of app development of the Internet of Things. FreeWave: Can you talk about how you got involved in IoT app development and what that means from an Industrial IoT perspective? Greg: I got involved with IoT app development when we [FreeWave] started the ZumIQ project. IoT app development revolves around developing software to interconnect devices, and there’s a huge need for that in the industrial space known as the IIoT. So, I started working with some graphical JavaScript-based environments like Node-RED, and I realized that this quickly allowed me to solve problems that were facing our customers. FreeWave: Are Node-RED and JavaScript the primary languages being used right now to develop those apps? Greg: Yes, mostly you’ll see a lot of Python stuff, a lot of Java, and hence JavaScript, and then you’ll see some stuff written in C as well, but, really, the web-based languages have taken off. People write apps in Java and PHP for the most part. And then Node-RED is a graphical frontend for JavaScript. FreeWave: Can you talk a little bit about the app that you developed for FreeWave – ZumDash – and where it resides within an IIoT network? Greg: So, FreeWave has traditionally made radio products where you just put data in and out of the system and that’s all it does. It’s just a complicated replacement for a physical cable. With the new ZumIQ platform, it allows us to add a lot of intelligence at the Edge of these networks where a radio is functioning much more than just a radio. It’s actually an application development environment. It’s an application platform. So, the app that I developed, I wanted to showcase the radio’s capabilities at the Edge of the network, and specifically, there’s a few other things I wanted to show. I wanted to show data storage: so, actually, it’s recording data on the radio itself. I wanted to show the display of that data in a dashboard format. I wanted to show communication, so the radio can still act as a radio and then you can have email alerts and other alerts based on data points. And then I wanted to show logic as well: If This Then That. So, to be able to read a sensor value and if it’s within a certain range to then take action on it. So, the app that I built was really meant to showcase those four things: data storage, dashboard, communication, and logic. FreeWave: So, for the storage part, how often are people trying to actually store data on those Edge devices as opposed to having them just be conduits for the data transmission? Is that a different way of approaching it? Greg: Yeah, it’s a different way of approaching it, and what it allows you to do is free up network capacity. So, if you’re continuously sending and receiving data from the field to a central source, you’re using throughput and bandwidth on that network. With some of these Edge networks, it could be in something that’s moving on the ground and there’s not a very high antenna height; it could be a really noisy environment; there could be a lot of metal obstructions in the way. Sometimes, in the industrial realm, the networks aren’t as rock solid as you would want them to be, or there’s limited capacity for connectivity. So, by moving some data storage operation to the Edge, we can then free up our network capacity for other resources. FreeWave: So then from there are you able to run analytics on that Edge device to filter out some of the data that you don’t need? Greg: Yeah. Iin ZumDash there’s a frontend on it that I use. Using the frontend, you can remotely log into the radio, you can examine every piece of data the radio has recorded, and you can do that graphically. Then, you can build charts based upon that data, and then you can also export to Excel. So, all the data that resides on the radio in the MySQL database is available for analytics remotely, on demand. FreeWave: Does this have a dual track function where you can store data and look at it later, but you can also get the data in real-time if you need it? Greg: Yes, and also, how often the app records data to the database is configurable. You can look at configured intervals. The quickest time I can do at the moment is five seconds. So, every five seconds it’ll record data from six different sensors. FreeWave: Why was the dashboard display an important part of this app? Greg: It allows easy access to data. Let’s say there’s a problem and you want check on the status of a device. I don’t want to have to look through logs or something like that. I want that data easily displayable. So, adding the dashboard allows anybody to be able to log in and

Industrial IoT Top News: Fog and Edge Computing

As more IoT devices are deployed (with billions to come in the near future) there is a substantial push towards on-device analytics, programmability, and command/control for critical applications. This is especially relevant for businesses that are driving operational transformation with remote or industrial networks. As a result of these factors, all roads point to fog and edge computing as critical practices for meeting the future demands of Industrial IoT (IIoT). Below you will find our list of top news stories that highlight the trends, research data, predictions and best practices around edge and fog computing over the past few weeks. If you want to read about an edge computing application being deployed with our customers today, read about the “Small SCADA” edge application here. Edge Computing Supports the Growing Needs of IoT Devices An article recently featured in Network World by Raj Talluri (@rajtalluri) looks at the increasing power of everyday IoT devices. This newly achieved power results in reduced data center loads and cloud-based capabilities that are leading to IoT innovation. As a result, on-device computing and analytics (i.e. edge computing) are growing in importance. “Edge computing delivers tangible value in both consumer and industrial IoT use cases. It can help reduce connectivity costs by sending only the information that matters instead of raw streams of sensor data, which is particularly valuable on devices that connect via LTE/cellular such as smart meters or asset trackers. Also, when dealing with a massive amount of data produced by sensors in an industrial facility or a mining operation for instance, having the ability to analyze and filter the data before sending it can lead to huge savings in network and computing resources.” The future of IoT Deployments Points to Fog Computing A recent TechTarget article by Alan R. Earls looks ahead at fog computing. It notes that large amounts of data required for IoT devices is leading to a future that includes fog computing and edge IT. The article reveals that IoT leverages more devices than ever was conceivable. In fact, the most recent estimates foresee more than 50 Billion IoT devices deployed in the coming years. These devices are often deployed outside the data center, far beyond the reach of IT professionals. As a result these devices are going to be increasingly software-defined to allow for remote management, revealing the need for critical fog IT strategy planning. “Tomorrow’s cloud will need to extend beyond the walls of a service provider’s data center, seeping into the business — becoming almost pervasive via edge devices and local connection hubs.” Successful Fog Implementation   With Fog Computing on the horizon, an EE Times  post by Chuck Byers of @OpenFog, offers tips for successful fog implementation. The post focuses on recognition of where fog techniques are needed, spanning software across fog nodes North-South and East-West, understanding the pillars of the fog as identified by OpenFog, Making fog software modular and linked by standard APIs, and tips for making each installation very easy. “Software is the key to the performance, versatility and trustworthiness of fog implementations. Make it manageable and interoperable by carefully partitioning it into functional blocks. The interfaces between these blocks should be based on well tested, standard APIs and messaging frameworks. Open source projects can be a good starting point for fog software development once you’re identified the right properties for your applications.” The Transformative Nature of IoT A post in Computer Business Review discusses the shift in IoT from optimization from transformation. According to the post, more than half of IoT projects have met or exceeded their goals even though most are sticking to improving company efficiencies rather than transforming business processes. A recent survey states that for the 47 percent of companies which failed to meet IoT goals, two reasons stood out: company culture and a shortage of skills.This further demonstrates the importance of getting the whole company behind IoT projects in order to have the greatest chance of success. The article also highlights the early, but growing importance of edge computing. “Edge computing, where computing and analysis is carried out near where data is gathered, not in a central data centre, is continuing to grow in importance but there’s still progress to be made. About 30 per cent of sensor data is currently analysed ‘at the edge’, the rest goes to a traditional data centre which creates issues of latency and bandwidth for the network. But looking forward those surveyed expected more than 70 per cent of sensor data would stay at the edge within five years.” A New Look at Data Through Edge Computing   A TechTarget IoT Agenda Blog by Jason Andersen (@JasonTAndersen) examines how more engineers are placing a higher importance on data produced by their automation systems than on the tools needed to make them happen. This evolution in thinking reflects the increasing potential that data and advanced analytics offer enterprises in untapped business value, especially looking at emerging practices like edge computing. “Currently, most industrial enterprises are in the ‘informed’ stage, where they are starting to understand and realize the potential of IIoT, but have not made strides in tapping its potential. However, many are beginning to look ahead and think more tactically about progressing to the next phases.” Could Edge Computing Weaken the Cloud? An opinion piece by Bob O’Donnell (@bobodtech) in TechSpot examines the potential changes we can expect to see as we move closer to edge computing. While he doesn’t see cloud going away by any means, he does expect a shift towards edge computing in some areas. “Exactly what some of these new edge applications turn out to be remains to be seen, but it’s clear that we’re at the dawn of an exciting new age for computing and tech in general. Importantly, it’s an era that’s going to drive the growth of new types of products and services, as well as shift the nexus of power amongst tech industry leaders. For those companies that can adapt to the new realities that edge computing models will start to drive over

ZumIQ Named Finalist in Control Engineering’s “Engineers’ Choice Awards”

Last week, Control Engineering Magazine announced our new ZumIQ App Server as a finalist in its Control Engineering 2018 Engineers’ Choice Awards program! This award opportunity is particularly exciting for FreeWave because along with the industry-wide respect that the magazine garners, the products themselves go through a fairly comprehensive review before being selected as a finalist. In late September, we officially announced the ZumIQ App Server, which combines 900 MHz wireless telemetry with the ability to program and host third-party applications, similar to a Linux-based Raspberry Pi embedded in an industrial Ethernet radio. One of the really cool (in our opinion!) facets of the ZumIQ is that Industrial IoT developers can program with any language that is compatible with a Linux kernel, including: Python, Java, C++, Node-RED and Node.js development environments. The ZumIQ App Server software comes pre-loaded with Node-RED, Python and MQTT for easy industrial IoT app development. For FreeWave, it really plants a flag in the ground for our ongoing goal of bringing true intelligence to the Edge. More importantly, it is a true testament to the engineering talent here that have bought into the company’s vision and put together an innovative, game-changing piece of hardware. We’d love to share a little more about the ZumIQ. To learn more, check out our ZumIQ Solutions Brief that can be downloaded here: https://www.freewave.com/zumiq-solution-brief-download/ If you like that, then we’d also love it if you headed over to the Control Engineering website and gave our ZumIQ a vote of confidence! You can find that link here: https://gspplatform.cfemedia.com/pe/productProfile/598e03dbe4b044ddd0c2ebbb It is an exciting time to be part of the FreeWave team, and part of the growth of Industrial IoT in general. The transformations over the last few years have been staggering, and the momentum and understanding of how these systems can improve business, quality of life and many other facets of our critical industries has only continued to grow.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.