FreeWave Technologies, NetFoundry, and Keyfactor Announce a Triumvirate for IIoT Connectivity Security Services

Boulder, CO – January 28, 2025 – FreeWave Technologies, a leader in industrial wireless connectivity and Industrial Internet of Things (IIoT) solutions, has integrated the technology of NetFoundry and Keyfactor to deliver unparalleled security and simplicity for IIoT connectivity. This triumvirate leverages Zero Trust principles and architecture from the field’s foremost leaders, setting a new standard for network security in remote and embedded industrial edge operations. FreeWave Technologies has implemented this stringent security methodology into its IIoT network portfolio. “Based on the criticality of secure connectivity in today’s hyper-connected world, we looked for a team that could push us beyond what’s common with VPN and APN security practices today. Leveraging Zero Trust principles and techniques will help our customers move away from once-trusted VPNs to something that is impermeable to threats. FreeWave’s Zero Trust overlay applies the strictest security practices on every user, device, and application in our customers’ networks. Our deny-by-default model ensures no bytes or access requests are allowed, until explicitly authenticated and authorized with strong identity,” said Steve Wulchin, CEO of FreeWave Technologies. FreeWave Technologies: Leading the Charge in IIoT Connectivity FreeWave Technologies’ innovation has consistently been at the forefront of industrial connectivity, providing robust and reliable IIoT solutions tailored to the unique challenges of remote operations for three decades. Our key features include: Enhanced Connectivity: Leveraging global satellite and cellular networks, along with our proprietary radio communications, FreeWave ensures seamless communication in even the most rugged and remote locations. Real-Time Data Visualization: Users benefit from real-time data visualizations, alerts, and alarms, crucial for optimizing operations, understanding usage patterns, and addressing issues promptly via our Platform-as-a-Service data platform solution. NetFoundry: Zero Trust Secure Connectivity Designed into your Products NetFoundry, a pioneer in Zero Trust security, is driving a paradigm shift worldwide that enables product builders like FreeWave to embed secure overlay connectivity directly into their industrial-grade products and applications. Key features and benefits include: Secure By Design Solution Offers: Connected products become unreachable from underlay networks, utilizing their own, embedded, global zero trust connectivity. Simplified and Scalable Operations: Increased adoption of products and services by eliminating inefficient dependencies on customer’s infrastructure, identifiable IP addresses, vulnerable VPNs, and complex firewall configurations. Business Velocity and Acceleration: NetFoundry’s OEM Partners quickly deliver new connected product offers to the world’s most security conscious customers, exceeding EU CRA, NIST 800-171, and IEC 62443 standards without long development cycles. “FreeWave has designed NetFoundry’s industry-leading, embedded Zero Trust connectivity into their powerful IIoT solutions, making adoption super simple and secure for their customers. The integrated solution means FreeWave customers do not need to waste time and money to build their own secure networking infrastructure, nor do they need to disrupt existing firewalls and network routing configurations. We are proud to partner with FreeWave to help them serve IIoT customers with excellence”, said Galeal Zino, CEO of NetFoundry. Keyfactor: Ensuring Trust with Comprehensive Digital Identity Security Keyfactor, the leader in digital identity security, specializes in protecting the integrity and authenticity of data and devices with: Public Key Infrastructure (PKI): Keyfactor provides comprehensive PKI solutions to manage and secure digital identities across IIoT devices, ensuring data integrity and trust. Certificate Lifecycle Automation: Automates the management of digital certificates, reducing the risk of expired certificates and potential security vulnerabilities. IoT Device Security: Ensures that every IIoT device is authenticated and authorized, preventing unauthorized devices from accessing critical networks. “With the rise of IIoT, ensuring the security and integrity of every device and data point is crucial. Our collaboration with FreeWave and NetFoundry brings together the best in connectivity, network security, and digital identity management to safeguard industrial operations,” said Ellen Boehm, SVP, IoT Strategies and Operations at Keyfactor. A Synergistic Solution for Unmatched IIoT Security FreeWave’s implementation of this security technique marks a significant milestone in advancing IIoT security standards for remote IIoT networks. By combining FreeWave’s expertise in industrial connectivity, NetFoundry’s Zero Trust networking, and Keyfactor’s digital identity management, customers can rely on a comprehensive security solution that addresses the most pressing challenges faced by remote industrial operations. Key Benefits of the Triumvirate: Enhanced Security: Authenticate-before-connect and no inbound FW ports means no network requests or bytes of data can be sent, minimizing the potential risks of network attacks, hacks, and device insecurities. Seamless Integration: Clients benefit from a unified IIoT solution that integrates robust connectivity, advanced network security, and digital identity management. Operational Efficiency: Real-time data insights and secure connectivity enable clients to optimize their operations and reduce downtime. Scalability and Flexibility: The combined solutions ensure that clients can scale their operations efficiently, adapting to evolving industry demands. Visit the FreeWave Technologies’ website to learn more about the latest IIoT network developments and how this collaboration is setting new standards in the industry. ### Press Contacts FreeWave TechnologiesSue Mooresmoore@freewave.com303-381-9205 NetFoundryMichael Pearlmichael.pearl@netfoundry.io KeyfactorMarketBridge for Keyfactorkeyfactor@marketbridge.com
Transforming Vulnerable VPNs with Zero Trust Security in 2025 is Sound Cyber Strategy

As the world becomes more connected and cyber villains get smarter, networks for remote operators are fair game to threats and cyber risks. Chief Technology Officers (CTOs), Chief Information Officers (CIOs), and Chief Information Security Officers (CISOs) are tasked to protect data, people, and reputations. Here, we explore why VPNs come up short while zero trust puts you ahead. CTOs, CIOs, and CISOs, you are the cyber watchdogs of your organizations, so this message is for you. In a previous blog written for C-suite leaders, we established that VPNs can come up short for keeping internal networks, including machinery, control systems, and databases, secure from the increasingly savvy hacker. Why does this matter? When we talk about the internet of things (IoT) today, everything is connected to the internet, from your watch or phone to thousands of business assets like machinery, sensors, and industrial equipment. With only a VPN standing guard, a hacker can get into your network through your facility’s smart thermostat (lest we forget the casino fish tank data hack of 2017). For decades, FreeWave has provided industrial IoT solutions for companies in oil and gas, agriculture, mining, water treatment, and other remote industries, to help them overcome a variety of network productivity issues and give them peace of mind that the health of their network – and the assets connected to it – is robust and secure. We believe, whether it’s working with our channel partners or adding our equipment to an OEM’s solution, that there are four essential security outcomes companies investing in IIoT should strive for: Secure remote monitoring and data management Automated, decisive response to threats No to low network vulnerabilities Cost savings compared to traditional VPN-based security Decommissioning a VPN as a primary source of cybersecurity in favor of zero trust network access (ZTNA) creates a stealthier, easier-to-use framework to detect and deflect cyber-attacks. Cybersecurity in the Wild West It is widely understood that Europe has continuously been five to 10 years ahead of the United States when it comes to cybersecurity. This is because the United States is like the freewheeling wild west. Cyber attacks cost companies billions of dollars. In IBM’s Cost of a Data Breach report for 2024, companies averaged a loss of $4.88 million, which is a 10% increase over 2023. More specifically to VPNs, the 2024 ThreatLabz VPN Risk Report published by Zscaler says that 78% of organizations plan to implement a zero trust strategy in the next 12 months with 91% of respondents concerned that VPNs will lead to a “compromising breach.” The survey says top threats to VPN vulnerabilities are ransomware (42%), other types of malware (35%), and DDoS (distributed denial-of-service which are attempts to overwhelm a server or network) attacks (30%). The findings make sense. Let’s say you notice nefarious traffic going across your network and you realize it is a former employee who still has access because their VPN credentials were not completely shut off. Even after you took their computer, they were able to go to their own computer, fire up a VPN and use their credentials to get into your network. VPNs are like a house – once you’re in, you’re in. Now you are faced with spending valuable time dealing with this behavior and any resulting damage. In contrast, a zero trust network promptly and fully blocks attackers from any access in the first place, making your job of monitoring considerably easier. As a tech leader, imagine what that level of security could do for your peace of mind as well as your company’s risk landscape. Zero trust is not new, but it has evolved. It was first coined in 2010 to protect enterprise networks, cloud networks, and basic IT networks. Two obstacles to zero trust are based on dangerous assumptions. One is that, while cyber attacks happen every day, they won’t happen to you. The other is that upgrading to ZTNA is too costly. If you’d like to explore why both are myths, give us a holler. To protect your data and network, start exploring the lowest level of your system and work from there. These questions are a good start to finding and closing vulnerabilities. What are your highest priority assets to protect? How will you handle encryption across diverse environments? Are you buying devices designed to implement zero trust? Are you buying network routers that are better suited for zero trust enablement? Are you developing edge networks with zero trust architecture to prevent people from plugging into an ethernet port on your network and destroying the site? What would be the potential harm to the business if your data and network were compromised? If you don’t have answers to all these questions, take heart. FreeWave has the capacity to interface with companies on their third-party applications that are not zero trust enabled. We manage this through what we call a “demilitarization zone,” where we have an unsecure system and a secure system and we match them together and know that the unsecure system is authenticated. We set up the entire network to avoid potential threats. Many remote, industrial operations have multiple locations to manage. A company with 10,000 sites – what we call the Razor’s Edge© where the data lives – would otherwise have to send its IT techs out to every site to implement a security platform. That means work, time, and expense. FreeWave is simplifying IIoT data by developing an easier pathway to zero trust on edge networks. Imagine sending a zero trust enabled device out to each site, installed on a network in minutes, while protecting said network down to the desired granular level. In the world of devices, the idea that a device can be designed and manufactured so that it is zero trust secured as it comes off the production line has been getting a lot of traction over the last five years. This approach is miles ahead compared to when VPNs were first introduced. You can always tap into FreeWave’s
One SIM, Limitless Possibilities: FreeWave Unveils Comprehensive Global Cellular IoT Connectivity

BOULDER, CO – November 25, 2024 – FreeWave Technologies, a top global player in Industrial IoT networking and data management has been named Master Reseller for Velocity IoT and will begin reselling cellular IoT connectivity services, immediately. FreeWave’s expansion of its global IoT solutions and connectivity services, now includes cellular connectivity with a single SIM that provides smart connectivity, enterprise management platform and support for more than 190 countries and 600 carriers in a single and simplified rate plan bill. Offering the largest hyperlocal, global data network, providing centrally managed local connectivity for any cellular IoT device, anywhere. Gain direct network access, control your connectivity, monitor devices, access real time events, switch operators remotely, and troubleshoot ahead of time for seamless device performance. The benefits of cellular IoT anywhere include: One Global SIM Card for all carriers with direct-to-carrier reliability and performance Future-Proof Connectivity with over-the-air updates. Auto-Carrier Switch to ensure the best possible coverage and connectivity Device Agnostic allows most cellular IoT devices to connect “We are always striving to provide the best possible solution, at the best possible cost to our customers. Optimizing existing cellular management and connectivity costs will increase our customers’ profitability. With our solution, FreeWave customers will not pay customary charges for set-up, activation, and best yet, our customers will be in full and direct control of their data management they also will not be charged for inactive SIMs.” Said Michael Tate, Chief of Operations and SVP of Sales and Marketing at FreeWave. For industries with remote asset management like agriculture, utilities, energy, and production, pairing this new service with FreeWave’s popular remote IoT network solutions means reducing costs and boosting efficiency. “We’re thrilled to partner with FreeWave to bring our intelligent cellular connectivity solutions to their customers, offering flexible, multi-network coverage with the reliability and reach businesses need to operate globally. FreeWave’s dedication to best practices and durable IoT solutions guarantees smart connectivity for the future. Their legacy solutions, many of which have been in place for decades, truly showcase their quality and reliability. We’re excited to have our services integrated into their offerings,” said Ilian Papasov Head of Market Strategy at Velocity IoT. To learn more about the new global SIM solutions available now from FreeWave, visit here or call 866.923.6168. About FreeWave TechnologiesBased in Boulder, Colo., FreeWave Technologies is an IIoT data solutions provider that believes data unlocks true business transformation for those operating in the hardest-to-reach places on earth. For more than 30 years, the company has equipped remote industrial operators with edge intelligent radios and solutions – manufactured in the United States – to optimize the extreme edge of their operations. Today, FreeWave integrates its powerful Insights™ data platform, data visualization through a single pane of glass, remote monitoring at the edge, and turnkey connectivity – including satellite – to create an intuitive path from operational data to extraordinary decision-making for business transformation at scale. Visit www.freewave.com to get started. About Velocity IoTBased in Orlando, Florida, Velocity IoT is a global connectivity provider dedicated to making IoT accessible, scalable, and seamless for businesses of all sizes. With a global carrier library interconnected through local core mobile networks, Velocity IoT delivers low-latency, high-performance, and regulatory-compliant connectivity that overcomes roaming restrictions—all through a single SIM and vendor relationship. Gain access to real-time network insights, remote SIM management, and automatic carrier switching to ensure uninterrupted, future-ready IoT connectivity. As a trusted partner, Velocity IoT empowers clients to fully harness IoT with tailored solutions that simplify connectivity, reduce complexity, and drive impactful business results. Visit https://www.velocityiot.io to learn more. Press ContactsFreeWave TechnologiesSue Mooresmoore@freewave.com303-381-9205 Velocity IoTNatasha Angelinounatasha@velocityiot.io844-994-4468
Why Choosing Zero Trust Network Access Over Virtual Private Networks is a C-Suite Decision

You’re leading the company. Why do you need to care about your business’ network security approach? The answer comes from something all too familiar: the accelerated rate of change – and the quest by modern leaders to build a resilient company. PwC describes today as the “age of continuous reinvention” in its 27th Annual Global CEO Survey report. One of the most startling findings is that 45% of CEOs do not believe their company will be viable in 10 years if it stays on the current path. Part of the challenge is knowing what could take your company down. Cybersecurity vulnerabilities at the network level is on the list. PwC’s report shows that CEOs who believe their organization is viable for more than 10 years perceive inflation (21%) and cyber risks (21%) as top threats with macroeconomic volatility (20%) just a half-step behind. As chief technology officer for FreeWave, part of my role is to find weak spots in a network connected to the industrial internet of things (IIoT). I talk to many senior leaders from companies in the oil and gas, agriculture, mining, water treatment and other remote industries. What’s the number one pushback I run into? They tell me they use virtual private networks (VPNs). I call this “pushback” because, at FreeWave, we don’t let VPNs into our data platform. At their most basic level, VPNs are used to create a secure connection between a user’s device and the VPN server. Through that connection, data is encrypted, and a user’s IP address is hidden. As a result, VPNs can allow remote users to securely access internal networks, including machinery, control systems, and databases. For those who may not be familiar with a VPN (although we’ve all probably used one at some point), here’s a simple analogy. Think of a VPN as a tunnel buried far below intersecting highways. One end of the tunnel is an IIoT device and the other end is the server. Your car (let’s make it a Maserati, while we’re at it) is a data packet. Instead of traveling across potentially dangerous highways where threats abound (a malicious attempt to steal your Italian beauty and hold it for ransom, as an example), you take the tunnel built just for you and other authorized drivers you trust. The challenge today is that the tunnel is no longer safe. Why Are VPNs Insecure? Technology ages faster than a male tsetse fly. Our tiny-winged friends hit their teenage years by week two or so. In contrast, technology ages by the nanosecond. I think the reason why many people use VPNs is the same reason hackers infiltrate them so easily. VPNs are old technology. They have long been the go-to solution for providing remote access to industrial control systems (ICS) and other critical infrastructure. They were born during the rise of the internet late last century. One solution begets other problems. The world wide web went from 3 million to 16 million users between 1990 and 1995 (today, there are 5.45 billion users, around 67% of the population). As a result, a group led by Microsoft sought a solution to growing security concerns. That’s how VPNs were born. To be fair, there are ways to make VPNs secure, but the enormous expense doesn’t make financial sense for most companies. Here are three reasons why VPNs cause concerns when protecting an IIoT network: VPNs have outdated authentication models. Username and a password is all you need. I can get into a VPN easily. VPNs are a single point of failure. If something goes wrong with the server, you can’t get in. If I’m a hacker, the best way to take down every remote access in the world is to take down the VPN server. VPNs are hard to monitor. The actual traffic on the network makes it hard to identify nefarious activity flying across it. Let’s say you have this machine on the edge (edge is simply the source of where your data is – this might be where oil is drilled in upstream oil and gas, for example). The data is being processed on that machine (edge computing) and is connected to the corporate network via a VPN. A disgruntled employee leaving the company can sit in their car and use their username and password to access the device through a cellular system. What is the potential damage? In 2020, several prominent VPNs experienced critical vulnerabilities that allowed attackers to bypass encryption and access systems. The Colonial Pipeline attack, for example, was traced back to a legacy VPN, according to then CEO Joseph Blount. The East Coast company paid hackers $4.4 million to restore service quickly. VPNs create easy targets. Once you’re in, you have free rein to do what you want. Solving the Challenge to Scale Network Security A report by McKinsey and Company predicts 50 billion devices will be connected to the IIoT by 2025. The pace of change, according to the report, has increased tenfold. This means the risks and insecurities behind VPNs for organizations, especially remote industrial leaders, are rising. I talked to a large agricultural company recently that uses a VPN. Here’s how the conversation went: Them: How can we add 20,000 sites to our system? Me: We’d have to add 20,000 VPNs. Them: Wait, what? Me: It’s really difficult. VPNs are hard to scale. One VPN is one thing, but many VPNs are a nightmare. We believe a better way to secure a network is to use Zero Trust Network Access (ZTNA). ZTNA creates a network fabric using the principle of least privilege access (PoLP). The premise: trust no one. Each user accesses only the data they need. See how the lens flips from inside out to outside in? In a ZTNA, each user has a policy. This means they are authenticated for access to specific areas. The disgruntled employee mentioned earlier? They cannot go anywhere in the fabric without authorization. Even better, that user’s access can be easily removed or revoked. Ever
The #1 Strategy Remote Industrial Operators Need to Win the AI Race

From the inaugural Olympics in 776 B.C. until today, one thing has remained the same: athletes bring gritty, physical prowess to their chosen sport – and the human desire for excellence. Of course, other things like culture, fashion, and technology have changed dramatically (thankfully, since athletes in the first Olympics competed naked!). In the Olympic Games Paris 2024, one game changer is the role of artificial intelligence (AI). Remote industrial operators looking to scale business value and improve decision-making through edge data, take note: the Olympics, watched by 3 billion people from around the world, is deploying AI to improve future performance of their event. According to an article published by the International Olympic Committee (IOC), AI and digital twinning are being used as an efficiency booster for future Olympic games – from energy consumption to identifying the best places to place cameras and power sources. “The expectation for a lot of people is ‘I’ll just AI it.’ It’s like a magic wand.” One thing AI demands is historical data. This is why we are so passionate about industrial operators owning their data. Without data ownership, it’s a false start when using large language models to train and leverage AI algorithms. In the article entitled “AI and Tech Innovations at Paris 2024: A Game Changer in Sport,” Ilario Corna, the IOC’s chief technology officer said, “We started gathering various operational data as far back as 2020, to look at how we can make the management of the Olympic Games more efficient.” Ryan Treece, global business development manager – data platform & AI solutions at FreeWave, has seen AI evolve over the past decade. He says companies that don’t give customers rights to their data are putting them at a disadvantage. “The thing is that those who own their data will eventually win because they can use it while others will start from zero.” Catching up over time, he points out, becomes increasingly difficult as competitors advance. Companies that secure data ownership today are the ones who will lead tomorrow or, in Olympic terms, will earn gold in the AI race. That’s one reason FreeWave drafted the IIoT Bill of Rights (data governance is amendment one) – as a way for remote industrial operators to leverage technology for future growth and opportunities. Importance of Data Ownership in the Age of AI Owning your data is not just a competitive advantage; it’s a necessity. “There are a lot of AI solution providers,” Ryan explains. “The expectation for a lot of people is ‘I’ll just AI it.’ It’s like a magic wand. Look into the future, though, and ask: What do vendors like? Reliance on their systems.” Ryan says there is no one “mega-solution” out there to solve every problem, but, if there’s one thing he hopes industrial operators know it’s that data ownership means leveraging your data for operational and business performance. “We’re targeting predictive maintenance to prevent machines from going down, reduce fuel waste just to see if a machine is running dozens or even hundreds of miles away, and increase efficiencies so people are not wasting time and energy resources. Data creates long-time success.” Just as the IOC is using AI to create more efficiency in the future, he says understanding data over time enables industrial operators to continuously improve. While still under development, FreeWave is building its AI solutions around domain expertise. Through its FreeWave® Insights™ data platform, it’s connecting decision-makers with data at the edge via sensor technology, pulling in SCADA system data as well. He cites vibration tension sensors as an example. If a rotating asset like a bearing, for example, wobbles, an alert is sent to a single pane of glass – a dashboard connected to the Insights data platform. From there, a technician can add the issue to his planning schedule. Ryan shares the story of when he lived in Michigan. An automotive manufacturer that made panels, a “tier one supplier” in the industry, didn’t have the budget to climate control the entire building. In hot, humid weather, the adhesive failed. Since variables change over time, he says, IIoT solved the problem. “Vibration and temperature data from sensors showed the numbers going up and down. Historical data tells us to change the adhesive or turn up the AC or ramp up the climate control when needed. The manufacturer and its solution providers knew what knobs to turn by identifying trends in a specific period.” That’s why, he says, data ownership is so important. Without data, AI becomes impossible. Solve – and Simplify – Operational Problems “We’re working on solutions that reduce the tech stack and address specific problems like predictive maintenance and trends analysis of sensor data,” said Ryan. “When I’m thinking data, I’m thinking of a huge Excel spreadsheet.” Real-time monitoring of temperature, vibration, or water levels, for example, are important variables for industrial leaders: oil and gas producers with fields in remote or rural areas, large-scale agricultural operations with water pump stations dotting thousands of acres, or public and municipal providers with aging infrastructure in need of robust, remote network strength. These are places, Ryan says, that pose a risk for people to perform daily or weekly monitoring. Ryan points to his hometown of Austin, Texas, where the energy grid is unreliable, especially during hurricane season or super hot summer months. The panels on the grid can overheat. Alerts notify engineers to replace components before problems start. Rather than react, alerts and predictive maintenance reduce downtime. Another example he gives is California where water is a precious commodity. Knowing humidity levels, soil moisture, and water consumption allows agriculturalists to invest minimal resources for better outcomes. AI, he says, optimizes sensor data locally, at the edge, by providing analyses crucial to decision-makers. Failure-Proofing Connectivity Keeps Data in Play Oftentimes, industrial operators don’t have ready access to cellular or Wi-Fi, however, satellite is an optimal solution for areas with questionable coverage and those wanting a strong back-up connection. Pairing satellite with the FreeWave cloud-based Insights platform-as-a-service
Industrial Operators – You Own Your Data and Then Some

July here in the states is painted red, white, and blue. It’s a time when freedom becomes front and center. We are grateful for our young country. We remember the Founding Fathers and the sacrifices they made. We recognize, if only for a moment, our collective pride. No matter your country of origin, those who came before were brave enough to make a path toward a future with greater freedom. This got us thinking (after all, we do have “free” in our company name!). What does freedom mean when it comes to data? What does freedom mean for remote network industry leaders? Freedom means access to your data. Freedom means ownership of your data. Freedom means visualizing operations through real-time data. Data, in a sense, renders the freedom to take action, make informed decisions, and realize greater business value at scale. At FreeWave, we pledge to make IIoT data a freedom all remote industrial leaders can enjoy. Freedom gives way to growth, learning, and success. For more than 30 years, we have believed in the power of data. Data impacts decisions, business value, and, most importantly, the very future and safety of real people and our planet. Henceforth (to borrow from our Founding Fathers’ lingo), we’ve taken the liberty to create the first-ever industrial internet of things (IIoT) Bill of Rights. This is more than a list of nice-to-haves, they are must-haves for remote industrial operators of every size and industry. The IIoT Bill of Rights is our position on data governance and data democratization. It addresses global reach – that a remote industrial operator can be anywhere in the world and know what’s happening within their operations no matter how far they are spread out and what environmental conditions surround them. We believe a secure cloud environment is the right of every remote industrial leader. Zero Trust Security is not a privilege of a few, but the mainstay of many. Data should be kept safe, no questions asked. We also champion continuous connectivity. This comes by way of unlimited, high-speed, affordable satellite connectivity for all. To round our IIoT Bill of Rights, we lean into one of our four core values: Be a simplifier. This means that IIoT data solutions should be easy, plug-and-play deployments. No hair-pulling. No head-scratching. No unnecessary downtime. Instead: Open box. Power on. Get Data. This means fast deployment because uptime is one of the biggest freedoms IIoT data enables. Data inspires greater uptime because you have knowledge at your fingertips to make amazing decisions that keep operations running smoothly, all while keeping people safer. Another IIoT Bill of Rights amendment calls for cross-translation of protocols so that remote industrial companies can transform existing SCADA networks into data racetracks that carry more data, faster. Cross-translation allows different edge or SCADA protocols on the edge, SCADA, and even devices that speak different protocols to communicate. This is how industrial leaders can unleash the full power of an IIoT network infrastructure. The last amendment is AI readiness – because those who own their data will win the AI race. To see FreeWave’s full IIoT Bill of Rights, read our position paper. Working with our expert technical staff at FreeWave and experienced channel partners to solve your biggest wireless and edge computing challenges, you leverage the full solution for IoT connectivity that includes the FreeWave Insights™ data platform-as-a-service, satellite service connectivity (we’re a Connectivity Wholesale Partner in Viasat’s ELEVATE program), our portfolio of rugged connected devices, and satellite-connected devices (we’re a Global Authorized Reseller of ORBCOMM). If you’re passionate about bringing meaningful technology solutions to remote industrial companies, join us as a channel partner. If you’re a remote operator looking to scale business value leveraging your IIoT data, contact us here. We’re making a path to a future where data serves industrial operators in measurable and positive ways. Let’s do it together.
Latin America, Oil and the Race to Retrofit

Latin America has the second-largest proven oil reserves in the world behind the Middle East, yet it’s never been known as an oil-producing maverick due to external and internal hindrances, including U.S. sanctions against Venezuela and a regulatory framework in Mexico and elsewhere that tends to dampen competition. All that is about to change. With geopolitical disruptions wracking the Middle East and Russia, importers looking to diversify their oil supply have set their sights on Latin America — and for good reason. The discovery less than a decade ago of around 11 billion barrels of crude oil reserves off the coast of Guyana made headlines globally, with news coverage reaching a fevered pitch when the oil started gushing into pipelines. The “incredibly short” five-year timespan between discovery in 2015 to full-blown production in 2020 was “unprecedented,” according to Oilprice.com. The discovery, and the oil-and-gas exploration since then, has huge implications for the global market and for Latin American oil producers. It offers a partial solution to a looming problem: a source of clean, cost-efficient oil, which will be in high demand during the decades-long energy evolution. To stay competitive and claim its stake as part of the solution, Latin America’s existing onshore oil fields, which historically operate well below their production potential, have shifted into high gear to optimize performance, increase operational efficiencies, and reduce greenhouse gas emissions. There is a challenge, however, faced by many existing producers: aging infrastructure. Data Within Reach Aging infrastructure located in harsh, remote environments like the Maracaibo Basin in Venezuela, which is surrounded by mountain ranges and an almost constant veil of overhanging clouds, or the Sureste Basin in Mexico where more than 50% of the basin area is located in a deep-water Campeche slope, are not be built for data at scale. The challenge of outdated infrastructure lies in leveraging data from the increasing number of sensors at the edge for data collection, storage, analysis, and connectivity across the enterprise. IIoT devices have long been MacGyvered with twine and duct tape. They use different protocols within decades-old SCADA systems. These disparate systems hurt production potential with two significant barriers: equipment from a variety of vendors along with little or no historical documentation to reveal who or what the modifications were and machine languages that don’t talk “nicely” to one another. While we don’t have statistics showing the number of aging pipeline networks in Latin America, there is evidence that outdated equipment reduces oil and gas opportunities. In early 2024, the U.S. Energy Information Administration looked at Venezuela’s energy landscape and found that “much of Venezuela’s crude oil production capacity and infrastructure have suffered from a decade-long lack of capital and regular maintenance.” Yet, replacing a network from scratch is costly – and unnecessary. Retrofitting existing infrastructure makes sense, leads to increasing business value from your operations, and funnels data to key decision-makers throughout the business (yes, even beyond the operations team – more on that in a bit). To support our worldwide network operator customers, we often team up with in-region trusted distribution and system integrator partners. This helps our customers experience the FreeWave difference – an end-to-end Industrial Internet of Things (IIoT) data solution – with local expertise and ongoing support. One project we’re working on is based in Peru. The infrastructure is more than 15 years old. Over the years, personnel have changed and there has been no consistent tracking of data and processes. All this has led to knowledge gaps, with questions like: What equipment do we have in the field? Where can we increase efficiency? What data do we have that we don’t access? How can data help us reduce costly downtime? What data do decision-makers in different parts of our business need? How can satellite connectivity improve uptime and data access? In established oil fields, a rise in IIoT sensors measuring things like temperature, pressure, and flow is generating massive amounts of data. But too often, data generated at the edge remains siloed, beyond the reach of decision-makers. Or, because IIoT devices have been MacGyvered with twine and duct tape and, therefore, use different protocols within decades-old SCADA systems, standard protocols simply don’t communicate well. Retrofitting aging SCADA infrastructure means leveraging data for better data management, transfer, analysis, and visualization. The solution integrates IIoT sensors, edge computing, cloud analysis for extensive processing of data from different sources, and satellite connectivity. First, though, comes the convergence conversation. Unpacking IT/OT Convergence for Better Decision-Making FreeWave’s end-to-end solution includes the FreeWave® Insights™ data platform, connected devices like our FreeWave Fusion™ platform for edge processing and connectivity, ORBCOMM’s feature-rich satellite terminals, and satellite service plans through our partnership with Viasat. The unmistakable trend we’re seeing from our work in Latin America and other regions is is Information Technology (IT) and Operational Technology (OT) convergence. In the past, these two areas were worlds apart – and it was understandable. Each had its own agenda. They didn’t play in the sandbox together. Today, they must and can. Oil producers racing to retrofit their infrastructure are recognizing that convergence is essential. In an article by McKinsey & Company, “While the rationale for converging IT and OT originated years ago, the emergence of IIoT is driving momentum today—particularly IIoT’s need for data from a vast number of sources. Compared with a traditional IT stack, the IIoT-based industrial automation stack adds a new layer for analytics, end-user digital applications, data management, and storage.” An operation and IT alliance amps up computational power in the cloud and gives a clearer insight to more users. FreeWave is closing the IT/OT gap for oil producers in Latin America that have aging infrastructure needing to get data from sensors and machines in the field, converting that data through our platform and delivering it via a single pane of glass – a user interface that provides uninterrupted visualization of data to real people, alerts, and alarms that enable data-driven decision at the point of decision-making. While technology has evolved, OT has always been
FreeWave Technologies Announce New Leadership Roles

BOULDER, CO May 20, 2024 – FreeWave Technologies, a pioneering leader in Industrial Internet of Things (IIoT) solutions, is pleased to announce the promotions of Vice President of Engineering Richard Reisbick to Chief Technology Officer and Director of Manufacturing Karen Barboza to Vice President of Manufacturing. FreeWave CEO Steve Wulchin commented on the promotions, “Since joining FreeWave, Richard and Karen have consistently delivered exceptional results for our company and clients. Richard’s and Karen’s new roles will further enhance our leadership in IIoT solutions, taking us to the next level of strategic growth.” Mr. Reisbick brings a wealth of experience including roles as a serial entrepreneur, transformational engineer, IoT expert, and leader of high-performance teams. He is also an inventor who has prioritized the user experience and engineering of architecture of hardware and firmware for products utilizing MCU, DSP, and FPGA technologies. He earned a bachelor’s of science degree in electrical engineering and has various licenses and certifications in cloud and edge computing. Ms. Barboza has more than 25 years in leading and initiatives across quality, manufacturing, warehousing/logistics, accounting and engineering in various roles for Colorado and Texas technology and manufacturing companies. She has a master’s of science degree in management and has earned Six Sigma, ISO Lead Auditor and ASQ Lean Specialized certifications. About FreeWave Technologies Based in Boulder, Colo., FreeWave Technologies is an IIoT data solutions provider that believes data unlocks true business transformation for those operating in the hardest-to-reach places on earth. For more than 30 years, the company has equipped remote industrial operators with edge intelligent radios and solutions – manufactured in the United States – to optimize the extreme edge of their operations. Today, FreeWave integrates its powerful Insights™ data platform, data visualization through a single pane of glass, remote monitoring at the edge, and turnkey connectivity – including satellite – to create an intuitive path from operational data to extraordinary decision-making for business transformation at scale. Visit www.freewave.com to get started. Media contact:Sue MooreFreeWave Technologiessmoore@freewave.com303-381-9213
Edge Security in an Era of Distrust

Unlike other IIoT security models that rely on a trusted perimeter, a Zero Trust Security framework provides broader coverage by distrusting every network device and user along the data path. Working in cybersecurity, the good guys are expected to think like the bad guys. Let me explain. Institutions world-wide are still guarded when it comes to cloud computing, and while the cloud generally offers greater protection against cyberattacks than on-premise data storage and processing, it is not impenetrable to hackers. Despite this leeriness, roughly 60 percent of all corporate data already exists in the cloud. And cloud migration continues to accelerate. By 2025, 85 percent of corporate IT departments will have adopted a “cloud-first” strategy, prioritizing cloud technologies over on-premises solutions. That’s why, when developing the FreeWave® Insights™ cloud-based data platform, our team assumes the “bad actor” role. To ensure the integrity and security of data in the cloud, our team is charged with finding and exposing any weak spots. We must anticipate every conceivable threat and vulnerability. We think like the enemy so we can forge armor that guards against brute attacks and sneaky infiltrations alike. Zero Trust, Cloud, and Cybersecurity And that brings me to another part of my job: helping customers see the good in the cloud (in cyberspace), sometimes convincing them that it truly does not harbor threats as ubiquitous and unconquerable as the “vicious, Lovecraftian monsters” that lurked in the low-lying cloud (of the atmospheric variety) in the horror film The Mist. I can do so with confidence because our Insights platform — in conjunction with FreeWave’s Fusion™ radios — uses a Zero Trust Security framework to keep data secure all along the data pipeline and into the cloud. We’ll delve into Zero Trust Security in a bit, right after this plot twist: concerns about cloud security are indeed legit, but in the IIoT world, the cloud represents just one part of an ever-expanding attack surface of potential entry points for cybercriminals. It’s not so much cloud adoption as the rapid expansion of IIoT ecosystems — where numerous devices are connected and continually exchange data — that poses the greater cybersecurity threat. The proliferation of IIoT devices broadens network vulnerabilities, as each device becomes a potential cyberattack vector. That’s why a cybersecurity framework must extend from the cloud all the way to the edge, encompassing every networked IIoT device. This is where Zero Trust Security comes in. Never Trust; Always Verify A Zero Trust Security framework regards all network devices and users as suspect and ignores data from any source until the sender provides verifiable proof of identity. Unlike Virtual Private Networks (VPNs) and other conventional security models that control access to a trusted perimeter, Zero Trust Security requires multiple layers of authentication and authorization as part of a continuous process. A Facilities Management Advisor article aptly illustrates the difference by likening a VPN perimeter to airport security: You show your ID at the checkpoint, and once inside, you can “roam freely and check out all the shops, terminals, and gates.” Potentially, a fake ID could provide entry to the perimeter and unimpeded access within it. But if Zero Trust were in play, “you can access only the terminal, gate, and plane you are authorized to use when you get through security.” And what does it take to pass through security? Strict access controls include various cryptographic techniques including encryption (public) and decryption (private) “keys” and digital certificates. (I Googled “How to explain public and private keys to laymen” and up popped this discussion, which paints a clearer picture than the way I tend to describe Zero Trust cryptographies: as an elaborate secret handshake known only to card-carrying club members.) Besides assuming that every network-access seeker is an impostor or a malicious actor until proven otherwise, Zero Trust Security limits access based on the principle of least privilege, meaning that devices, users, and applications are only granted the minimum level of access required to perform their tasks. In addition, Zero Trust Security divides firewall-protected network zones into smaller, isolated micro-segments — each with its own access controls and encryption — to further prevent lateral movement by evil geniuses who manage to circumvent the first line of defense. End-to-End Data Pipeline Security The FreeWave Insights data platform takes Zero Trust Security all the way to the edge. The platform allows for the secure flow of information from IIoT devices and other data sources to the cloud for analysis and then to an onscreen user interface, or dashboard, which custom-displays different data sets for different users depending on their position and permissions. FreeWave’s Zero Trust Security framework starts with our Fusion radio gateways (coming soon!) that collect and transmit data from IIoT devices in the field. An easy-to-install application is all it takes to transform Fusion radios into cybersecurity fortresses by activating Zero Trust verification and encryption. The encryption process essentially wraps data in a Zero Trust packet for secure transfer to the cloud, where another app unwraps, or decrypts, the data and delivers it to the end user. But first, the Insights platform prioritizes, analyzes, and graphically represents the data based on the user’s dashboard preferences. FreeWave customers might have hundreds of IIoT sensors — many of them unsecured — operating across several industrial sites. All of these devices are integrable with our Fusion-based data encryption software and our cloud-based Insights data platform. Notwithstanding my penchant for envisioning the worst-case scenarios, I know a good thing when I see it. And Zero Trust Security is a good thing. But don’t take my word for it. According to IBM’s most recent Cost of Data Breach Report, Zero Trust strategies reduced the average cost of a data breach by $1.76 million in 2023. And, in its Market Guide for Zero Trust Network Access, Gartner asserts that Zero Trust architecture “erects true, identity-based barriers that are proving more challenging for attackers to circumvent than traditional network-level VPNs and firewalls.” Bottom line: Zero Trust Security is the best defense against cyberspace villainy.
FreeWave launches IoT-enabled Satellite Proof of Concept program for high-capacity, smart connectivity in remote locations

BOULDER, CO April 18, 2024 – In its latest move in advancing industrial digital transformation, IIoT data solutions innovator FreeWave Technologies is launching a satellite solutions proof of concept (PoC). The PoC includes expert white-glove support and up to five complementary satellite devices for remote industrial operators looking to explore the cost benefits of leveraging satellite for backhaul or primary connectivity*. FreeWave’s Satellite (PoC) enables companies to access enhanced data-driven analytics in its FreeWave Insights™ data platform, while also reducing operational costs and increasing productivity by utilizing powerful and reliable Internet of Things Satellite (IoToS) technology. The limited-time PoC offer allows qualified users to select up to five ORBCOMM ST9100 or ST6100 units for their implementation. *Eligibility requires that users purchase FreeWave’s network optimization (set-up and activation) and enroll in a one-year ISATDATAPRO plan per device provided by Viasat. “FreeWave is truly excited for this opportunity to collaborate with its customers, giving their organizations the ability to unlock growth with satellite-connected remote IoT solutions at an affordable cost,” said Mike Tate, FreeWave’s COO and SVP of global sales and marketing. “With this offer, we will assist these customers and organizations to gain the actionable insight into the data they need to drive informed business decisions, reducing overall costs while improving productivity across the board.” FreeWave Technologies is an authorized global reseller of ORBCOMM devices and a Viasat ELEVATE program Wholesale Connectivity Partner. About FreeWave Technologies Based in Boulder, Colo., FreeWave Technologies is an IIoT data solutions provider that believes data unlocks true business transformation for those operating in the hardest-to-reach places on earth. For more than 30 years, the company has equipped remote industrial operators with edge intelligent radios and solutions – manufactured in the United States – to optimize the extreme edge of their operations. Today, FreeWave integrates its powerful Insights™ data platform, data visualization through a single pane of glass, remote monitoring at the edge, and turnkey connectivity – including satellite – to create an intuitive path from operational data to extraordinary decision-making for business transformation at scale. Visit www.freewave.com to get started. Media contact:Sue MooreFreeWave Technologiessmoore@freewave.com303-381-9213