Managing Critical Assets with Industrial IoT Communications

Whether you’re a long-time employee at an industrial organization, or someone who is new to the Internet of Things (IoT) and Industry 4.0 – you likely understand what it means to be agile. To be ahead of the game and thrive in a quickly evolving industrial landscape, you must start with data. Edge Intelligent, rugged and app-programmable platforms and devices like the ZumLink 900 Series and ZumIQ App Server from FreeWave can get you there. The proliferation of data created and collected in remote areas has led companies of all sizes to search for technology that maximizes data efficiency and protection while keeping costs down. Managing and monitoring assets in rugged environments is a priority and innovative technologies continue to be introduced to provide industrial organizations with solutions to these issues. However, there exists a communications technology that has been around for decades, but continues to work effectively in relative obscurity. For collection and control of data in remote Industrial Internet of Things (IIoT) networks, Frequency-Hopping, Spread Spectrum (FHSS) technology provides a proven, resilient, robust and industrial cyber-secure data transmission technology. It’s an ideal technology for areas without cellular or WiFi coverage – such as in the APAC region. And it’s been around for a very long time. What is Frequency-Hopping Spread Spectrum? FHSS is a wireless Radio Frequency (RF) technology that spreads its signal over rapidly-hopping frequencies. It transmits much longer distances and requires lower power than traditional IoT wireless infrastructure including WiFi, Bluetooth, LoRa or ZigBee. It is also highly resistant to interference and difficult to intercept – there are 186,000 possible parameters to be on the same channel with an FHSS radio and data is only on a specific channel for 1/100th of a second. Why is this technology critical in remote industrial settings? Currently, 60 percent of rural and remote Asia-Pacific does not have access to fixed broadband or WiFi. FHSS technology has been used for over 100 years by businesses, and governments can link wireless devices and smart sensors at long ranges – in 900MHz and 2.4GHz – for a long-range alternative to Bluetooth, ZigBee and LoRa.  From a cost standpoint, significant CAPEX and OPEX savings can be realized with FHSS relative to cellular. How safe is my data with Frequency-Hopping Spread Spectrum? FreeWave FHSS radios utilize advanced encryption protocols to insure additional layers of cybersecurity, including: FIPS 140-2 Level 2 Encryption 128 or 256-bit AES Encryption Additional benefits? Coupled with the ZumIQ App Environment Platform, organizations can create custom industrial applications to control sensors and gather data in remote locations in real-time. Networks can extend up to 40 miles in remote areas and transmit data at speeds up to 4 Mbps for voice, video, data and sensor links. We are talking LONG range IIoT. Intelligent FHSS technology is leveraged in industrial settings across oil & gas, water/wastewater, precision agriculture, irrigation, unmanned systems, robotics, utilities, and more. At its inaugural Ingram Micro ONE APAC 2018 event in Singapore, Ingram Micro (a FreeWave Technologies partner) unveiled FreeWave’s ZumIQ Platform that combines rugged, intelligent, app-programmability with FHSS technology to link wireless devices at long ranges. Tough AND intelligent data. It’s win-win. For more information, click here.

Women in Tech: Hedy Lamarr

It was back in 1941 when Hedy Lamarr, an Austria born actress, together with George Antheil co-patented a “secret communication system” which allowed radio control of torpedoes that could not be easily discovered, deciphered or jammed. Her secret: frequency hopping! Coordinated, rapid changes in radio frequencies would literally “hop” in the radio spectrum, thus evading detection and the potential of interference, in other words, being suppressed or jammed. Even though her idea was ahead of its time and not implemented in the U.S. until 1962, when it was used by U.S. military ships during a blockade of Cuba (after the patent had expired), it is now the basis for modern Frequency Hopping Spread Spectrum (FHSS) wireless communication systems. FHSS wireless systems are very resilient when it comes to impairments such as interference (deliberate or coincidental) and “jamming.” Other effects can be observed when wireless signals travel through space, such as the “multipath” phenomenon, simply because they use only very small amounts of radio spectrum at a time and don’t dwell (or remain) at that frequency long, instead “hop” to another frequency quickly. Statistically, chances are that the signal does not “land” at the interfering frequency, thereby successfully evading the jamming signal. This makes Denial of Service (DoS) attacks on FHSS systems very difficult, albeit not completely impossible. Information Pioneers – Hedy Lamarr Edition As part of BCS, The Chartered Institute for IT video series, Miranda Raison presents Hedy Lamarr for the “Information Pioneers” series and dives deeper into the history behind one of wireless communication’s leading ladies who, together with George Antheil, pioneered the beginning of a communication revolution. Hedy Lamarr would’ve been 101 years old this November.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.