Industrially Hardened Time Keeping

Today, a wide variety of industries with outdoor OT assets require technology that can connect the assets to a modern communication network. Depending on the application, the solution is not always as simple as slapping on a cellular or standard WiFi solution. For one, many industries have assets located in remote locations where cellular coverage is limited and long range communication is required. The OT network must also be highly secure and have the ability to avoid interference. Additionally, any outdoor communication network is subject to weather and natural elements. The best hope for maintaining reliable, secure, real-time connectivity is with a solution that is ruggedized, industrially hardened and proven to work in the most extreme environments. Recently we talked about wireless communication solutions used in Antarctica, that are performing under some of the most extreme conditions in the planet. These Frequency Hopping Spread Spectrum (FHSS)-based technologies are built to last and perform with a secure connection. Did you know that the same solutions have also made their way into the sport of boat racing? When November rolls around each year, rowing enthusiasts gather in Chatanooga, Tenn. For the Head of the Hooch race. A total length of 5,000 meters, it is one of the largest and fastest growing regattas in the U.S. Each year more than 2,000 boats race over the course of two days.  Participants come in from all over the U.S. and the event has hosted international teams from Canada, Germany, Sweden and Australia. Real-Time Accuracy The race is organized by the Atlanta Rowing Club. In the early days, organizers relied upon stopwatches for keeping time. As the race grew and more boats participated, the manual method of time keeping was no longer feasible. Organizers needed a time keeping solution with a link strong enough to deliver race results in real-time in any weather condition. Organizers selected an industrially hardened wireless communication solution and used it in conjunction with a timing system built for downhill skiing races. The system offers precise timing accuracy – down to 1/10th second for each boat. The wireless solution uses FHSS technology that is typically used in utility-scale Industrial IoT (IIoT) applications. These types of solutions have been used for monitoring and control of outdoor assets in the utility industries for decades and have proven to ensure accurate, real-time connectivity in harsh, remote locations. Not only is the “hopping” nature of FHSS inherently secure, but there are solutions with AES-encryption and other advanced security features to further secure the network. The solutions also offer a range of 60 miles Line-of-Site (LOS), and have proven to be ideal for the Head of the Hooch race. Over the years, races have been conducted in cold, rainy, cloudy and/or windy weather, and the solution has reliably performed in all whether conditions present during the race. Rugged, industrially hardened communication solutions that are well known in the oil/gas and utilities markets – aren’t always the initial choice for connecting non-industrial outdoor networks. In some cases, decision makers in these markets may simply be unfamiliar with the benefits of FHSS. What they need to know is that FHSS solutions have been trusted for years to provide long-range, real-time connectivity, and they are often ideal for a variety of use cases outside of industrial markets. Read the full Head of the Hooch case study here: https://www.freewave.com/case-studies/head-of-the-hooch/

Busting the Myths About FHSS for Industrial IoT

IT/OT convergence has shaken the way businesses operate from a networking, connectivity and communications perspective. As IT decision makers look to find technology that will support the needs of modern digital networks, it is easy to overlook Radio Frequency (RF) solutions. Frequency Hopping Spread Spectrum (FHSS) technology is a viable option that has been around for decades. With the right solution in place, FHSS technology is reliable and robust enough to get important data from the field back to the central office. With newer, high-speed and high-throughput options, it can be ideal for helping solve modern convergence challenges. FHSS technology is well-known for its use in OT networks in industrial settings, but the IT side might not be as familiar with the technology. There are a number of myths about FHSS technology that need to be clarified in order for an IT decision maker to understand its potential. Today we’re going to bust three big myths: Myth One: FHSS Technology is Not Secure Enough for Modern IIoT Networks 900 MHz FHSS technology leverages an unlicensed spectrum which has led to the misperception that it is vulnerable to jamming and DoS attacks. The reality is that the signal is constantly hopping in the spectrum and does not stay on a single frequency for long. This one of its greatest strengths and makes it much more difficult to jam. IT decision makers who are greatly concerned with security should also know that some manufacturers offer two layers of security. The first is the natural built-in protection from the frequency hopping and the second is 128 or 256 bit AES encryption. Myth Two: Crowded Spectrums Lead to Poor Coverage Network congestion is a long-standing misperception associated with FHSS technology. Operators are often concerned that performance could be affected in an unlicensed spectrum if too many devices are trying to use it at once. However, the frequency hopping nature of the technology actually serves as a strength.  The jumping allows the technology to identify the better channels, even in areas that are known for being noisy and congested. FHSS technology has been proven and trusted by the U.S. military for decades to perform in situations where lives are on the line. Myth Three: FHSS Technology is Best Suited for Industrial Environments Like Oil and Gas In oil and gas and military circles, FHSS is frequently used and widely known as a strong wireless communication option. However, the technology may not even be on the radar of an IT decision maker tasked with new responsibilities as the OT/IT divide closes. What IT decision makers need to know is that FHSS technology is also currently used in networks completely outside the scope of traditional industrial networking. Here are a handful of unique ways FHSS is currently being used: Oceanic Monitoring and mapping Auto and Boat Racing Testing for Electric Cars Plant Automation Asset Tracking in Healthcare Golf Course Communications and Golf Cart Monitoring Aquarium research A Good Fit FHSS technology fits nicely into the evolving technology landscape – especially when data needs to be transported from the access layer back to the business office. Despite the challenges that OT and IT teams face as they learn to work closer together, FHSS remains a proven, reliable option to help bridge the gap.

Women in Tech: Hedy Lamarr

It was back in 1941 when Hedy Lamarr, an Austria born actress, together with George Antheil co-patented a “secret communication system” which allowed radio control of torpedoes that could not be easily discovered, deciphered or jammed. Her secret: frequency hopping! Coordinated, rapid changes in radio frequencies would literally “hop” in the radio spectrum, thus evading detection and the potential of interference, in other words, being suppressed or jammed. Even though her idea was ahead of its time and not implemented in the U.S. until 1962, when it was used by U.S. military ships during a blockade of Cuba (after the patent had expired), it is now the basis for modern Frequency Hopping Spread Spectrum (FHSS) wireless communication systems. FHSS wireless systems are very resilient when it comes to impairments such as interference (deliberate or coincidental) and “jamming.” Other effects can be observed when wireless signals travel through space, such as the “multipath” phenomenon, simply because they use only very small amounts of radio spectrum at a time and don’t dwell (or remain) at that frequency long, instead “hop” to another frequency quickly. Statistically, chances are that the signal does not “land” at the interfering frequency, thereby successfully evading the jamming signal. This makes Denial of Service (DoS) attacks on FHSS systems very difficult, albeit not completely impossible. Information Pioneers – Hedy Lamarr Edition As part of BCS, The Chartered Institute for IT video series, Miranda Raison presents Hedy Lamarr for the “Information Pioneers” series and dives deeper into the history behind one of wireless communication’s leading ladies who, together with George Antheil, pioneered the beginning of a communication revolution. Hedy Lamarr would’ve been 101 years old this November.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.